Collin L. Juurakko
Melissa Bredow
Takato Nakayama
Hiroyuki Imai
Yukio Kawamura
Matsuo Uemura

Freezing damage can be particularly devastating with a single frost event capable of destroying billions of dollars worth of crops. To protect themselves, some plants enhance their freezing tolerance through an intricate process called cold acclimation. The plasma membrane and associated proteins are central to this cold response and maintaining membrane integrity is vital for survival. However, to date, no cold-acclimated plasma membrane proteome has been characterized in a species related to humanity’s most important crops, the cereals.

Current Queen’s Biology graduate student Collin Juurakko and former graduate student Dr. Melissa Bredow led by Dr. George diCenzo and Dr. Virginia Walker together with collaborators at Iwate University in Japan have characterized the first cold-acclimated plasma membrane proteome in a monocot species and uncovered new protein targets to investigate. Crosstalk between stress responses was also mapped and exhaustive, large-scale datasets of all proteins found have been made available to the community for researchers to mine.

It is often said that a plants’ ability to survive freezing is measured by their capacity to protect the plasma membrane. This study has increased our understanding of how crops may respond to cold stress and enhance their freezing tolerance, bringing us one step closer to developing freeze tolerant crops to ensure future food security! To learn more, read the article in G3: Genes|Genomes|Genetics.