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Welcome  
Welcome to the software skills side of the Introductory Statistics course. Here you will 

learn how to do the statistical analyses and create the plots that you’ve been 

learning about in the videos and lectures. The software primers are designed to 

work hand-in-hand with the videos and assignments, and it is important to keep 

these elements well connected throughout the course.   

We will be using two software programs—Microsoft Excel and R. This is a natural 

pairing because Excel is an excellent spreadsheet program that is good for working 

with data, and R is a versatile and powerful software program for statistics and 

graphing. Both are easy to learn, will serve you well after graduation, and give you 

software skills for your Resume that are in demand. R and Excel are both available 

for free, and are required for the in-lab quizzes.  

Primer 1: Getting Started with Excel & R  
In this first section you will install Excel & R on your computer, and do some simple 

calculations.  

Excel is a spreadsheet program that is well suited for data 

management and basic calculations. Since Excel is operating system 

and year dependent, it is important that you have the most recent  

version installed on your computer that your operating system will  

allow (2011 or  2016 for Mac, 2013 for Windows). These versions are free to 

download from Queen’s IT Services at http://www.queensu.ca/its/Office365-

ProPlus.  

R is a computational environment that is used for a wide range of 

statistical and mathematical analyses. For example, it can be used 

as a calculator; for creating stunning graphs; run basic and 

advanced statistics; and for more specialized analyses such as 

found in bioinformatics. In this course you will learn how to do basic statistics, which 

will give you a foundation from which to develop more specialized skills in other 

courses or after graduation. R is supported and developed by academics, has a 

large number of references and help resources available on-line and in print, and is 
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free (even after graduation). A big advantage to using R in a statistics course is 

that it uses a command-line interface, which is ideal for teaching because students 

and instructors can easily look at the written commands to find errors and to 

reproduce analyses exactly.  

To install R, go to cran.r-project.org (CRAN stands for the Comprehensive R Archive  

Network) and click on one of the MacOS X or Windows links in the “Download and  

Install R” box. Follow the links for your operating system (choose ‘base files’ for 

Windows users) and download the latest version (‘R-3.3.1-win32.exe’ for Windows 

users and ‘R-3.3.1.dmg’ for MacOSX users).  The downloaded file has an installer in 

it, so double clicking the file and following the prompts is all you need to do to 

install R.   

Creating a working directory  

You will need to create a number of files over the course of the term, and you will 

want to keep these well organized on your computer. We will begin by setting up a 

dedicated folder on your computer for these files. This will save many hours of 

retyping your code once we get into the analysis phase of the course. This folder 

will be used to store data, as well as Excel and R files.   

For MacOSX computers, click on Finder and navigate to where you would like the 

folder to be. A good place is under your home directory. Once there, select File 

from the pulldown menu and select New Folder. Give that folder a name such as 

Statistics Course. Open the folder by double clicking it. You can add more folders 

here if you want to organize your files by tutorial week. If you are having trouble 

creating the folder, Google “OS X Yosemite: Folder basics” to find online tutorials, 

or ask your TA during tutorial time.  

For Microsoft computers, navigate to the location where you want to store your 

files and right-click. Point to New and click on the Folder option. Then type the 

name you want for the folder. You can add more folders inside this one if you want 

to organize your files by tutorial week. If you are having trouble creating the folder, 

Google “create a new folder microsoft” to find online tutorials, or ask your TA 

during tutorial time.  
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Let’s get started with Excel!  

Start Excel as you would any program. The main 

window that opens on start asks you to select a 

template. Choose “Excel Workbook”, which will 

create a blank spreadsheet that looks similar to 

the one shown on the right. The columns are 

labeled with letters and the rows with numbers. 

Each cell can be configured to hold text, 

numbers, or a formula to suit your needs. Let’s 

start by using it as a calculator. In  

cells B1 & B2, enter the number 2. In cell B3, enter the formula =B1+B2, which adds 

together the contents of cells B1 & B2. Your spreadsheet should look like the picture 

shown below as you enter the formula, and give you a value of 4.  

 

You can keep your spreadsheet organized by adding text to adjacent cells. Let’s 

label the first cell ‘Apple’, the second cell ‘Pie’ and the result ‘Sum’.  

 

The spreadsheet can be used for a wide range of calculations. Change the ‘pie’ 

value to 5, then try dividing (=B1/B2) and multiplying (=B1*B2) the numbers, and 

raising one to the power of the other (=B1^B2). Your sheet should look something 

like the following picture.  
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Working with vectors  

A vector is just a list of numbers, and is created in Excel by entering data into a 

series of cells. We will create our vectors as columns. Here’s an example  

 

We can work with a vector of data using formulas in the adjacent cells. For 

example, let’s subtract 7 from each data point. This is done by entering the formula 

=A1-7 into an adjacent cell and copying it down using the square at the bottom 

right hand side of a highlighted cell. Grab the square with your mouse and drag it 

down. The following 3 images illustrate the steps.  

 

We can also compute quantities such as the sum (=SUM(B1:B7)) or minimum value 

(=MIN(B1:B7)) of a vector. The round braces indicate that we are using a 

function, and the ‘B1:B7’ indicates the range of cells we want the function to be 

calculated over. See if you get the same answer as shown below for the sum and 

minimum of the newly calculated vector.  
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Let’s get started with R!  

Start R as you would any program. You should 

have a single window open that looks like the 

image on the right.  This is called the console 

and is the starting window for the R program. 

When you move your cursor to the console, 

you should see 

>     

This is where commands are entered. Lets try it. 

Type “2+2” and then press the enter key  
> 2+2  

The answer will appear below the line you typed (preceded by “[1]”).  
> 2+2  
[1] 4  

The number in square brackets just indicates that this is the first entry in the vector 

being returned. Throughout the manual we will use a green background to 

indicate what you see in the console with green font for text that you enter and 

black for what R answers back with.  

Now let’s create some variables. First, create a new variable ‘apple’ and assign it 

the value 2  
> apple=2  
Then create a new variable ‘pie’ and assign it the value 5  
> pie=5  

Now we can manipulate some of the variables.  
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> apple-pie  
[1] -3  
> apple/pie  
[1] 0.4  
> apple*pie  
[1] 10  

If you want to raise something to the exponent, use the ‘^’ symbol  
> apple^pie  
[1] 32  

A list of common arithmetic operations is found in the ‘R Reference Cards’ at the 

end of this manual.  

Working with vectors  

A vector is created in R using the function c(). In R, all functions use round brackets 

to accept input, with each input entry separated by a comma. To create a vector, 

all we need to do is to provide the function c() with a list of numbers separated by 

commas.  
> julie=c(3.2,4.1,5.5,6.2,7.1,8.4,9.5)  

To see what is a variable, just type its name.  
> julie  
[1] 3.2 4.1 5.5 6.2 7.1 8.4 9.5  

To access a particular entry in the vector, use square brackets at the end of the 

name. Here the [3] indicates that you want the number in the third spot of the 

vector.  
> julie[3]  
[1] 5.5  

Mathematical operations are done directly on vectors—here’s some examples:  
> julie-7  
[1] -3.8 -2.9 -1.5 -0.8 0.1  1.4  2.5  
> julie-julie  
[1] 0 0 0 0 0 0 0  
> julie^2  
[1] 10.24 16.81 30.25 38.44 50.41 70.56 90.25  

Notice that the operation is carried out on each entry of the vector independently.  
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The output from a new operation can also be assigned to a new variable  
> b=julie-7  

Type b to see what it looks like  
> b  
[1] -3.8 -2.9 -1.5 -0.8  0.1  1.4  2.5  

Working with functions  

Functions are typed commands that perform a specific task in R. You can pick 

them out easily because they will be followed by round brackets, such as the 

function to create a vector shown above c(). Some functions that are useful for 

summarizing information about a vector are sum(), mean(), min() and max(). 

Spaces within a function have no influence, but R is very picky about commas and 

whether or not letters are capitalized.   

Here’s an example using the b vector  
> sum(b)  
[1] -5  
> min(b)  
[1] -3.8  

R commands are case sensitive, so the following code works  
> mean(julie)  
[1] 6.285714  

but the following do not work  
> Mean(julie)  
Error: could not find function "Mean"  
> mean(Julie)  
Error in mean(Julie) : object 'Julie' not found  

There are an enormous number of functions in R, and we will just scratch the 

surface in this course. One function that’s particularly useful when it comes to 

selecting which objects to sample is the sample() function. This function returns a 

random subset of the numbers you provide. For example, this line will return a 

random set of 10 numbers between 1 and 100. Try it for yourself.  
> sample(1:100,10)  
[1]  56   8  99 100  85  91  79  20  49  59  
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The 1:100 statement is a shorthand way to get a vector of integers from 1 to 100. 

Try typing it in the console for yourself.  

Let’s get plotting  

R can be used to generate some of the nicest graphs of any statistical software. 

The ease with which R can make plots will allow you to explore your data, check it 

for errors, visualize the data before analyzing it, and check assumptions of the 

statistical analyses. In this section, we will create a simple line plot to illustrate what 

can be done. Let’s create a plot that looks at the change in life expectancy in 

Canada. Our typical approach will be to load the data from a file (covered in 

Primer 2), but for this first lab we will enter data directly into the console. Start by 

creating a new ‘year’ and ‘age’ vector. To save time, you can highlight the 

commands below in your PDF reader, then copy and paste them into R. 

Remember that the  > symbol is the prompt, so don’t include that when copying 

the text.  
> year=c(1830, 1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970,1980, 
1990, 2000, 2009)  
> age=c(39, 49, 53, 57, 59, 64, 68, 71, 73, 75, 77, 79, 81) 

Line plots are created using the plot() function, which requires the arguments X 

and Y, where X is a vector of all x-axis values you want to plot, and Y is a vector of 

the y-axis values. The first entry of the X vector corresponds with the first entry of the 

Y vector, and so on. A basic plot is created by typing  
> plot(year,age)  

The resulting plot shows an increase in life span through time, but it’s not a very nice 

looking figure.   

 
	 1850 1900 1950 2000 

year 
	    

40
 

50
 

60
 

70
 

80
 

ag
e 



Fall 2016 

12 

In Primer 4 we will learn how to work with plotting options. As an illustration, the 

following command will generate a more complete figure  
> plot(year, age, type='b',pch=19,xlab="Year", ylab="Age", 
col="blue",ylim=c(30,90), main="Life Expectancy in Canada")  

This looks a bit more complicated, but some of the meanings in the plot command 

can be figured out from context (e.g.  xlab and ylab let you set the x and y axis 

labels). Others like type and pch are less obvious.  Don't worry—we will gradually 

introduce and explain each of these options in the upcoming primers.  

Life Expectancy in Canada 

 

Year 
   

The editor  

Now that we have covered some functions and tools in R, we will want to learn to 

use the editor. The editor allows you to save your instructions for submitting with 

assignments, and gives you a way to save commands so that you don’t have to 

create them from scratch each time. The editor is also linked to the console, so we 

can ‘submit’ our work to the console right from the editor. To start a new editor file:   

• MacOSX - click on ‘File’ from the menu bar and select ‘New Document’  

• Windows OS, click on ‘File’ and select ‘New Script’  

Save this file (it will have a ‘.r’ ending) to the folder where you want to save your 

work and give it a name to help you remember the content. Now you can type 

your code, which is called a ‘script’. It’s a good idea to add comments using the # 

symbol to remind yourself of what each line does. The # symbol tells R to ignore the 

text that follows on the same line, which means you can submit it along with your 

code without causing an error. Here’s an example R script; notice that the prompts 

are shown in the console but not in the editor.  

1850 1900 1950 2000 

30
 

50
 

70
 

90
 

A
ge
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#This file creates a plot of life expectance through time  

#Year data 
year=c(1830, 1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 
1990, 2000, 2009)  

#Life expectancy data  
age=c(39, 49, 53, 57, 59, 64, 68, 71, 73, 75, 77, 79, 81)  

#Plot 
plot(year,age,type='b',pch=19,xlab="Year",ylab="Life 
Expectancy",col="blue",ylim=c(30,90))  

To submit the script in MacOSX, select the text with your mouse (or place your 

cursor anywhere inside the text), hold the command key and press return; in 

Windows OS select the text with your mouse, hold the control key and press the ‘R’ 

key.  

 

You should always use the editor for the tutorials rather than the console!  
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Primer 2: Working with Data  
The last primer was an introduction to the two software programs we are using in 

the course. In this section, we are going to learn how to structure our data, enter it 

into a spreadsheet in Excel, and load it into R.  

How to structure a dataset  

Throughout the course we will be entering a wide range of data types. As you will 

learn over the next week or so, this includes both numerical and categorical types 

of information. To make it easy to work with different types of data and different 

analyses, all of our datasets will be structured in what is called long-form format. In 

long-form format, each row is a different observation unit, and each column tells us 

something different about that single unit. For example, if you measure the height 

(cm) of 10 classmates the dataset would look like this image. 

 
If you measured additional attributes for each person, then each new attribute 

becomes a new column. For example, if we also had data on sex (male, female) 

and age (years), the dataset would look like this image. 

 
Or, if your classmates were part of a study on the effect of exercise level (low, 

moderate, high) on resting metabolic rate (calories per day), the long-form format 

would look like this image.     
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Notice that some columns contain text (categorical variables) and some columns 

contain numbers (numerical variables); numerical and categorical variables are 

easily combined in the long-form format. The key here is that each row is a different 

person, or more generally a different observation unit. 

Creating the dataset in Excel  

To create the dataset in Excel, start by opening a new workbook and entering 

data in a blank sheet. Here are several things to keep in mind:  

1. The first row of the sheet is for column names.  

2. Column names should start with a letter, not have spaces and contain only 

letters and numbers. For a more descriptive title, use ‘camel case’ where each 

word starts with a capital letter without any spaces (e.g., ‘CamelCase’).  

3. Indicate the units of measurement (e.g., Finger length (cm)) in the text but not in 

the data sheet.  

4. Data start on the second row, and each line is for a different observation unit.  

5. If you have missing data for an observation unit, enter the letters NA.  

Once you have entered the data in the proper long-form format, then save it in a 

convenient working folder as a comma separated file (.csv). This type of file 

contains just the data with the formatting details in an Excel file removed. Comma 

separated files are straightforward to upload into R, and they avoid any issues with 

the version of Excel that you are using. To save your file as a comma separated file, 

click on the “File” menu and select “Save as…” . Choose a location to save the file, 

and then select “Comma Separated Values (.csv)” from the “Format” pull down 

menu. Then click “Save”. You will see the following announcement  
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click “Continue” and the file will be saved. Choose a name that will help you keep 

things organized; here I have used the file name ‘metabolic’. If you have entered 

data on more than one Excel sheet, only the active sheet will be saved in the .csv 

file. Create a .csv file of the dataset shown above that we can use to load into R.  

Loading the dataset into R  

Now that the dataset has been formatted in long-form and saved as a .csv file, it 

can be loaded into R. Open R and create a new script (make sure you are using 

the editor and not the console for entering R commands!). To load the dataset that 

you just created into R, we first need to setup a working directory. This is a directory 

where you can save your R-scripts, as well as any figures that you create for the 

tutorial activities. Follow these steps:  

1. Create a new folder on your computer as shown in Primer 1 and give it a name. 

You can call it whatever you like; I’ve called mine ‘Statistics Course 2016’.  It is 

easiest to put the folder in your user (OSX) or home directory (Windows). 

2. In R, manually change the working directory to your ‘Statistics Course 2016’ 

folder using the setwd()function. This function tells R where to load data from 

and needs to be added to your R script.  For example  
setwd("~/Statistics Course 2016")  

will tell R to load data from the ‘Statistics Course 2016’ folder. The tilde (~) in the 

file pathway works differently depending on your operating system. For Apple 

computers, it represents the user directory. For Windows, it represents the home 

directory. If you created your file somewhere else, then just put the full path 

name here. Remember to put quotes around the ‘path’ to the folder you have 

created. You can confirm that the working directory is set properly using the 

getwd()function. Give it a try!  

3. Load the .csv file into R using the read.csv() function. The 

read.csv('MyFileName') command reads in a .csv file with the name  
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‘MyFileName’. Here’s what the start of a typical script will look like  
#Load a data set  
setwd("~/Statistics Course 2016")  
MyData=read.csv("metabolic.csv") #load the file metabolic.csv  

You can name the dataset anything you like; I’ve used ‘MyData’ for simplicity.  
These files are called data frames in R. 

Viewing your data The next step is to look at your dataset in R. This is a very 

important step, and you can catch a lot of typographical errors simply by looking 

at the data. There are a number of ways to look at the data. If the dataset is small, 

just type the name into the console to see the entire thing. Remember that the 

console has the > symbol and runs commands instantly, whereas the script is 

saved and needs to be ‘submitted’ to run.  
> MyData  
       Name Height Gender  Age   ExerciseLevel   MetabolicRate  
1   Kumiko    161  female  20          low           1520  
2   Meredith  143  female  19      moderate          1704  
3   Natalie   155  female  19          high          1942  
4   Tamar     163  female  21          high          1832  
5   Henry     171     male  23          high          1709  
6   Husbana   170     male  20           low          1508  
7   Evan      176     male  20           low          1499  
8   Matt      170     male  19      moderate          1791  
9   Mary      160  female  19      moderate          1732  
10  Eric      169     male  19      moderate          1563  

If the dataset is large, you can just look at the first six rows of data using the head() 

function, or the last six rows using the tail()function. Looking at the first six rows is 

a good check that the data are lined up properly in the columns, and looking at 

the last six rows is a good check for blank lines that may have snuck into the 

dataset. Here’s an example of what the head()function looks like  
> head(MyData)  
       Name Height Gender Age    ExerciseLevel  MetabolicRate  
1   Kumiko    161  female  20          low           1520  
2   Meredith  143  female  19      moderate          1704  
3   Natalie   155  female  19          high          1942  
4   Tamar     163  female  21          high          1832  
5   Henry     171    male  23          high          1709  
6   Husbana   170    male  20           low          1508  
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Another way to view large datasets is to look at each column individually. To 

access the columns, use the $ symbol and the name of the column that wrote in 

the .csv file. If you have forgotten, you can see the column names by using the 

names() command  

> names(MyData)  
[1] "Name"          "Height"        "Gender"        "Age"       
"ExerciseLevel" "MetabolicRate"  

then access a particular column using  
> MyData$MetabolicRate  
 [1] 1520 1704 1942 1832 1709 1508 1499 1791 1732 1563  

Ensuring correct column type The final issue we need to be aware of is how R 

interpreted the dataset. The file can have a mix of categorical and numerical 

data, but only one type is allowed per column. If you have mixed data types in a 

single column, then the dataset is not set up correctly in Excel. R is generally good 

at figuring out if you intend a column to be numerical versus categorical, but 

sometimes mistakes happen. For example, if you are looking at three drug 

treatments and have called them treatment 1, 2 & 3 in your file, R will interpret 

these as numerical. You can check how R interpreted the file using the 

str()command, which indicates the type of data in each column.  
> str(MyData)  
 'data.frame': 10 obs. of  6 variables: 
 $ Name         : Factor w/ 10 levels "Eric","Evan",.. 
 $ Height       : int   
 $ Sex          : Factor w/ 2 levels "female","male" 
 $ Age          : int   
 $ ExerciseLevel: Factor w/ 3 levels "high","low","moderate" 
 $ MetabolicRate: int  

In this example, ‘Name’, ‘Sex’ and ‘ExerciseLevel’ are factors and ‘Height’, ‘Age’ 

and ‘MetabolicRate’ are integers. If the columns were interpreted incorrectly, we 

can force the columns into specific data types using the colClasses option in the 

read.csv() function. It works by giving R a vector indicating whether each 

column is numeric or categorical. Here’s an example using the dataset on 

metabolic rates  
#Load a data set and define column types  
MyData=read.csv("metabolic.csv",colClasses=c('factor','numeric', 
'factor','numeric','factor','numeric'))  
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With the dataset successfully loaded into R, we can graph the data and run 

statistical analyses. For example, to calculate the mean you type  
> mean(MyData$MetabolicRate)  
 [1] 1680  

The following short script loads the dataset and creates a box plot of the metabolic 

rate for each exercise level. We will cover how to create a box plot in Primer 4 

(including what on earth the ~ symbol is used for!), but for now we can run the 

script to see what the data look like  
#Load the file metabolic.csv and define column types  
MyData=read.csv("metabolic.csv",colClasses=c('factor','numeric', 
'factor','numeric','factor','numeric'))  
 
#create a boxplot  
x=MyData$ExerciseLevel  
y=MyData$MetabolicRate 
 
boxplot(y~x,col=c("orange","blue","green"),ylab="Metabolic Rate 
(calories per day)", xlab="Exercise Level") 

The graph should look like the figure below, which shows that basal metabolic rate 

is higher for people with higher levels of exercise.  
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Getting just the data that you want The data frames contain all the data for a 

particular problem. However, sometimes we want to work with just a subset of the 

data. For example, we may only want to know the mean metabolic rate for 

individuals with ‘high’ exercise levels. This is easy to do in R by creating a new data 

frame that is a subset of the original one using the subset() function. The function 

subset(data,condition) takes two arguments: data and condition. The first 

argument is your original data frame and the second indicates which levels of a 

categorical variable to use. For example, if we just want individuals with ‘high’ 

exercise levels, we would type 
> SubMyData=subset(MyData, ExerciseLevel=='high')  

Here ‘ExerciseLevel’ is the column name in the dataframe ‘MyData’ and ‘high’ is 

the level that you want to select. Notice that level selection is done using a double 

equals sign ‘==’, which in R stands for evaluating a condition. A single equals sign 

won’t work. Have a look at your new subset data frame to see what it looks like. 
> SubMyData  
     Name  Height Gender  Age   ExerciseLevel   MetabolicRate  
1   Natalie   155  female  19          high          1942  
2   Tamar     163  female  21          high          1832  
3   Henry     171     male  23          high          1709  

Now you can work with the new data frame just like the old one, but you are only 

working with a select part of the data. Compare the mean metabolic rate for the 

subset data with the mean you calculated above from the original dataset.  
> mean(SubMyData$MetabolicRate)  
 [1] 1827.667 
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Primer 3: Calculating descriptive statistics  
Descriptive statistics are the first step in any data analysis, and this section will show 

you how to calculate descriptive statistics in both Excel and R. You will learn how to 

do them in both software platforms because you will often want to whip up some 

descriptive stats in short order, and it will save you time to be able to do it in 

whatever program you are currently working in.  

Mean, median, variance & standard deviation  

For this section, we will use the metabolic.csv data file from Primer 2.  Open the file 

in Excel, and also load it into R. As a reminder, here are the commands you need 

to use in R to load the file and then check the contents.  
#Load a data set  
setwd("~/Statistics Course 2016")  
MyData=read.csv("metabolic.csv") #load the file metabolic.csv  

MyData #short dataset, so we can look at the entire thing  

Calculating the mean, median, variance and standard deviation in Excel is done 

using the functions AVERAGE(), MEDIAN(), VAR() and STDEV() over your data 

range. For example, the formula to calculate the average metabolic rate in the 

following worksheet is =AVERAGE(F2:F10) 

 

The blue box indicates the data range selected in the function. If you want to 

change the range, just grab any corner with your mouse and drag it. We can add 

some text to the worksheet to help identify the newly calculated descriptive 

statistics as shown below	 
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Some other useful functions are the  MIN() and MAX() functions, which give you 

the minimum and maximum value respectively of a data range.  

Calculating the mean, median, variance and standard deviation in R is done using 
the functions mean(), median(), var()and sd()applied to a data vector.  For 
example, the mean of vector a is found using the command mean(a). Here’s what 
an R script to calculate the descriptive statistics for metabolic rates would look like 
(make sure to write this as a script rather than using the console!).   
setwd("~/Statistics Course 2016") #set the working directory 
 
MyData=read.csv("metabolic.csv") #load the file metabolic.csv  
MyData #short dataset, so we can look at the entire thing 
 
mean(MyData$MetabolicRate)   #calculates the mean  
median(MyData$MetabolicRate)  #calculates the median  
var(MyData$MetabolicRate)    #calculates the variance  
sd(MyData$MetabolicRate)    #calculates the stdev  

Make sure you understand what each line is doing. The first line sets the working 

directory, the second line reads in the dataset, the third line displays the full 

dataset on the screen so that you can check for errors, and the remaining four lines 

calculate the descriptive statistics. The output for the last 4 lines is  
> mean(MyData$MetabolicRate)   #calculates the mean  
[1] 1680  
> median(MyData$MetabolicRate)   #calculates the median  
[1] 1706.5  
> var(MyData$MetabolicRate)    #calculates the variance  
[1] 23313.78 
> sd(MyData$MetabolicRate)   #calculates the stdev  
[1] 152.6885 
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Other useful functions are min()and max(), which give you the minimum and 

maximum value respectively of a vector.  

Quartiles & interquartile range  

Calculating quartiles and interquartile ranges is relatively straightforward, but 
requires using functions with 2 arguments. In Excel, the function is  
QUARTILE(array,quart), where the first argument array contains the range of the 
data, and the second argument quart indicates the quartile of interest. For 
example, if we wanted the first quartile (25%) of metabolic rates, we would type 
the equation as shown below  

 

The quart argument can take a value of 0, 1, 2, 3 or 4 depending on what quartile 

you are interested in. The following table shows what each value represents  

 
Notice that quart=0 will give you the minimum, and quart=4 will give you the 

maximum, which is an alternative way to get these values. The second quartile is 

50% of the data, so is just the median value. Here’s what an Excel worksheet looks 

like with the three middle quartiles added  
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The interquartile range is then calculated in a separate cell as the difference 

between the third and first quartiles. In this example, you would calculate the 

interquartile range as =F15-F13.  

 

Calculating quartiles and the interquartile range in R is a bit easier. The quartile 

function is quantile(x,probs), where x is the data vector, and probs is a number 

or short vector that indicates the proportion of the data for the quartile. For  

example, if we wanted the first quartile (i.e., first 25% of the data) of vector a, we 

would use the command quantile(a,0.25). If we wanted the 1st, 2nd and 3rd 

quartiles, we would type quantile(a, c(0.25,0.5,0.75)). Notice that we are 

using the short vector c(0.25,0.5,0.75) to ask for all three quartiles at once. 

Here’s what it would look like as an R script.   
#Load a data set  
setwd("~/Statistics Course 2016")  
MyData=read.csv("metabolic.csv") #load the file metabolic.csv  
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MyData #short dataset, so we can look at the entire thing 
quantile(MyData$MetabolicRate, 0.25) #First quartile 
quantile(MyData$MetabolicRate, c(0.25,0.5,0.75)) #3 quartiles  

The output for the last 2 lines is  
> quantile(MyData$MetabolicRate, 0.25) #First quartile  
25%   
1530.75  
> quantile(MyData$MetabolicRate, c(0.25,0.5,0.75)) #quartiles  
 25%   50%   75%   
1530.75  1706.50  1776.25  

A nice shortcut in R is the summary() function, which calculates, the minimum, 

maximum, mean and quartiles in one step.  
> summary(MyData$MetabolicRate) #a bunch of descriptive stats   
Min.  1st Qu.   Median   Mean   3rd Qu.   Max.   
 1499    1531    1706    1680    1776    1942 

The interquartile range can be calculated by taking the difference between the 

3rd and 1st quartiles, or by using the IQR()function.  
> IQR(MyData$MetabolicRate)  
[1] 245.5 

Compare these values to the calculations in your Excel worksheet.  
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Primer 4: Graphing  
Just as descriptive statistics are the first step in any data analysis, visualizing data is 

a key step to understanding your data and communicating results to your readers. 

Seeing the data helps catch errors, and helps check that the statistical analysis 

makes sense for the kind of data you have. Hence the mantra: Always plot your 

data!  

R creates gorgeous publication-quality figures that—for many types of figures—are 

much easier to generate than Excel. This primer will show you how to create each 

of the graphs covered in the course. The examples will use data on mercury 

concentrations in sediment samples for two lakes (OddBall lake and Lucky lake). 

For the first couple of graphs, you can enter the data directly into R by copying the 

following lines into a new script.  
OddBall=c(122.17, 100.29, 79.54, 86.07, 78.24, 77.25, 69.89,  
66.08, 91.26, 73.68, 67.58, 73.08, 102.54, 83.73, 88.86,  
106.63, 67.72, 82.56, 93.73, 71.41)  
 
Lucky=c(64.07, 55.36, 61.17, 72.51, 87.68, 72.31, 76.67,  
63.05, 68.33, 59.87,86.48, 80.71, 58.85, 45.02, 63.17, 72.06,  
71.51,69.88, 63.55, 87.78)  

Contingency tables   

It might seem odd to start a primer on graphing with contingency tables, but tables 

are a very useful way to visualize categorical data. Contingency tables summarize 

the frequency of observations that fall into one or more categories. For example, 

the following table shows the numbers of sediment samples from two lakes with 

mercury concentrations that are acceptable (below 100 ppb) or at risk to causing 

harm to aquatic life (above 100 ppb).   

Sediment 
Status 

Lucky Lake 
OddBall 

Lake 
Row Total 

At Risk 0 4 4 

Acceptable 20 16 36 

Column 
Total 

20 20 40 
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To create a contingency table in R, we will use the long-form data structure from 

Primer 2. This can either be read into R using a .csv file, or entered directing using a 

script. For this example, we will enter the data directly.  We need two vectors. The 

first will indicate the source lake (‘O’ is for OddBall lake, and ‘L’ is for Lucky lake), 

and the second will indicate risk (‘Y’ is for at risk, ‘N’ is for not at risk).   
lake=c('O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 
'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'L', 'L', 'L', 'L', 'L', 
'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 
'L', 'L')  
risk=c('Y', 'Y', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 
'Y', 'N', 'N', 'Y', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 
'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 
'N', 'N')  
The contingency table is then created using the table()function.  
> table(lake,risk)  
    risk  
lake  N  Y     
 L  20  0  
 O  16  4    

The table shows that no sediment layers in Lucky lake are of concern, but four 

layers in OddBall lake are. The data could then be entered as a table in a report.  

Histogram  

A histogram is a plot of the observed frequency of an event, and is created in R 

using the hist()function. A basic histogram is created as follows:  
hist(Lucky)  

To create custom text for the figure, use the xlab="…", ylab="…", and main="…" 

options, which add the desired text (entered in place of …) to the x-axis, y-axis and 

plot title respectively.    
hist(Lucky,main="Lucky Lake",xlab="Hg Concentration 
(ppb)",ylab="Observed Frequency")  

These options work with most of the plotting functions used in R. The histogram for 

each lake is shown below.  
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	Bar plots  

The barplot() function is used to create bar plots of your data. The number of 

bars in the figure is equal to the number of observations in the data set, and the y 

axis shows the value of the observations within a variable. The x-axis is the row the 

data were encountered in the dataset. A labelled bar plot of the Lucky lake data 

is created using   
barplot(Lucky,main='Mercury Concentration in Lucky Lake') 

With the default values, the function created a bar plot with a y-axis that ranges 

from 0 to 80, which leaves some bars to over hang the observed axis range. To tidy 

this up, we can use the ylim option, which has the form ylim=c(a,b), where the 

desired minimum and maximum are entered in ’a’ and ’b’ respectively. We can 

also add colour to the plot using the col option, which has the form col=‘…’ (e.g., 

col=‘blue’), where the color is entered as text (type colors() into R to see a list 

of common colors). A more polished barplot is created using  
barplot(Lucky,ylim=c(0,100),col='red',main='Lucky Lake', 
xlab='Sediment Sample', ylab='Mercury Concentration(ppb)') 
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Lucky Lake 

 

Sediment Sample 

To visualize more than one category, we use stacked or grouped bar plots. To do 

this, start by combining the two vectors into a single data frame.  
BothLakes=data.frame('OddBall'=OddBall, 'Lucky'=Lucky)  

The data frame BothLakes has two columns with each row a different depth. The 

text in quotations will be the column name for the vector in the new data frame.  

Type BothLakes into the R console to see the structure of the data for yourself. If 

you imported the data from a .csv file, it will already be in a data frame format. 

Since we want to plot the different depths across the x-axis, the barplot() 

function requires us to switch the rows and columns so that the data frame has two 

rows (OddBall and Lucky), and 20 columns that represent the depths.   

This is done using the t() function, which transposes the data set (i.e., switches the 

rows and columns). This is done by first converting the data frame to a matrix using 

the as.matrix() function.  
BothLakes=as.matrix(BothLakes)  
BothLakesTransform=t(BothLakes)  
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Depth Interval 

Have a look at the new data frame BothLakesTransform to see what the  

transpose function has done. The stacked bar plot is then created using   
barplot(BothLakesTransform, xlab="Depth Interval", 
ylab='Concentration of Mercury (ppb)', ylim=c(0,250), col=c('red', 
'lightblue'))  

All of the plot functions have options that let you get the feel and look you want. 

Take some time to explore how changing these settings affects the graph, and 

make sure you know what each option does.  

The barpot is starting to look nice, but it’s missing a legend to tell us what colour 

represents each lake. We can add a legend using the legend() function. The 

legend function has a number of arguments that tell R where to put the legend, 

what text to add and the colours. The function is legend(x,y,legend,col,pch) 

where x and y give the location of the upper left corner of the legend box, legend 

is a vector of names you want in the legend, col is the colour to use, and pch 

indicates the type of symbol (see Plotting Options in the last chapter for different 

symbols). Here’s the code for the above example that places the legend at x=15 

(15th observation in this case) and y=250.  
legend(15,250,c('OddBall','Lucky'),col=c('red','lightblue'),pch=19)  
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A grouped bar is created using the beside option, which has the form 

beside=TRUE. This script will create a grouped bar graph with a legend.  
barplot(BothLakes,main='', xlab="Depth Interval",  
ylab='Concentration of Mercury (ppb)', ylim=c(0,150),col=c('red', 
'lightblue'),beside=TRUE) 
legend(40,150,c('OddBall','Lucky'),col=c('red', 
'lightblue'),pch=19)  

 

Box plots  

A box and whisker plot illustrates the median and quantile levels. The function 

boxplot() indicates the median by a dark band within a ‘box’ which is bound by 

the 1st and 3rd quantiles. ‘Whiskers’ in this plot represent the most extreme 

datapoint within 1.5 times the interquartile range. Values outside the whiskers are 

plotted as points. To visualize the mercury concentrations in each lake, we need to 

create long-form data similar to what was used for the contingency tables. The first 

vector will be the mercury concentrations for both lakes, and the second vector 

will indicate which lake the observation is from. This is the format discussed in Primer 

2. At this point it is easier to enter the data in Excel, and import it as a .csv file. The 

data can be found in the file mercury.csv. Copy this file to your working directory, 

load the data into R, and have a look at the contents so that you see the data 

structure.  
MyData=read.csv("mercury.csv")  

The box plot is created using   
boxplot(mercury~lake,main="Mercury Concentrations by Lake", 
ylab='Mercury Concentration (ppb)',xlab='Lake',col= 
c('lightblue','red'),data=MyData)  

where the term mercury~lake is a formula that indicates to the boxplot() 

function that the mercury quantiles should be calculated for each level in lake. We 

will see more about writing formulas when we cover statistical tests. Here’s what the 

box plot looks like.   
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Mercury Concentrations by Lake 

 
	 L O 

Lake 

Sometimes we want more control over how the categories are presented on the x-

axis. In R, this order is determined when the data are first loaded. It’s an attribute of 

the data frame. To see the order, use the levels() function, which shows the 

levels in a categorical vector. For example  
levels(MyData$lake)  
[1] "L" "O"  

shows us that the data are ordered by Lucky lake (L) then OddBall lake (O). To 

change the order, we need to use the factor(x,order) function where x is the 

vector you want to reorder and order is the order you want the categories to 

appear on your figure. For the column of lake data, we can type   
MyData$lake=factor(MyData$lake,c("O","L"))  

The factor function does not change the data, it only changes the order of how 

the levels are displayed. Have a look at the new levels.  
levels(MyData$lake)  
[1] "O" "L"  

Now recreate the box plot and see what effect it had!  
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Scatter plots  

A scatterplot displays quantitative data for two variables. We encountered the 

plot() function in Primer 1, and it provides a great way to create scatterplots. For 

the example of mercury concentrations in two lakes, we can compare the 

mercury at each sediment depth as follows  
plot(OddBall,Lucky,main='Comparing Lake Mercury  
Concentrations',xlab='OddBall Lake Concentration', ylab='Lucky  
Lake Concentration',xlim=c(60,130),ylim=c(40,90))  

We can highlight changes relative to the means by adding two lines that represent 

the mean for each lake. The abline() function is used to create straight lines on a 

plot. For a vertical line, the abline() function has the form abline(v), where “v” 

indicates where you want the line drawn.  
>  abline(v=84.1155,col= 'blue')  

For a horizontal line the abline() function has the form abline(h) as follows:  
>  abline(h=69.0015,col= 'red')  

The final graph looks like this image.	 
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Primer 5: Calculating probabilities  
To help prepare for hypothesis testing, this Primer 5 looks at calculating probabilities 

and event ranges from distributions. Calculating these quantities is important for 

being able to find critical test scores.   

Event ranges and probabilities  

We are interested in computing two quantities from probability distributions. The first 

is the probability over a range of events, and the second is reverse, which is to find 

the range of events for a given probability. For example, consider the following 

figure that shows the probability density (black line) over a range of event values 

(x-axis). The probability of observing an event that is less than -1 (vertical line) is 

given by the area under the curve for that range of events (shown in blue). This is 

the quantity that we are most familiar with calculating from a  probability 

distribution. To go in the opposite direction, we start with a specified probability 

and find the range that would give that probability. In this primer we will learn to 

calculate probabilities and ranges for both the Normal and Binomial distributions.  

 

 

X 

To calculate probabilities over a range of events from a Normal distribution in R, we 

use the pnorm(x,mean,sd) function, were x is the upper limit of the event range, 

and the options mean and sd are the parameters of the Normal distribution. The 

function returns the probability of observing a value x or smaller. Be careful of the 

direction for the events—the probability is the area to the left of the upper limit. To 

calculate the probability shown in the above figure, we would write  
> pnorm(-1,0,1)  
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[1] 0.1586553  

In words, the code asks for the probability for all values smaller and equal to -1 

(event range) for a Normal distribution with mean of 0 and standard deviation of 1. 

Make sure you understand what each component of the function does.  

To go in the other direction, we use a related function called qnorm(p,mean,sd), 

where p is the probability and mean and sd are the parameters for the Normal 

distribution. The probability is assumed to be the area to the left of the event in 

these functions. The function then returns the upper threshold that corresponds to 

the requested probability. For example, to locate the event range in our Normal 

distribution that corresponds to p=0.025, we would write  
> qnorm(0.025,0,1)  
[1] -1.959964  

The threshold -1.96 is the upper range corresponding to a probability of p=0.025 for 

a Normal distribution with a mean of zero and standard deviation of one.   

The functions for the Binomial distribution are similar. The pbinom(x,n,p) is used to 

calculate the probability of observing x successes out of n trials if the probability of 

success is given by p. Asking the reverse question is similar to the Normal 

distribution, except that R will return an integer number of successes because the 

events are discreet by definition in the Binomial distribution. That means a range of 

probabilities are associated with observing a particular event. The following code 

shows an example. The first line finds the probability of observing 2 successes over 

10 trials with a success rate of 0.5, and the remaining lines ask for the event ranges 

that correspond to three different probabilities.  
> pbinom(2,10,0.5)  
[1] 0.0546875  
> qbinom(0.11,10,0.5)  
[1] 3  
> qbinom(0.15,10,0.5)  
[1] 3  
> qbinom(0.18,10,0.5)  
[1] 4  
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Primer 6: Chi-square tests, T-tests & confidence intervals  
In this primer, you will develop the skills to calculate confidence intervals, and to do 

hypothesis testing for one-sample t-tests, two-sample t-tests, and Chi-square tests.   

Confidence intervals for single samples  

Confidence intervals (CI) for single samples are based on the standard error (SE) 

and critical t-score (tC), which are both straightforward to calculate in R. The 

formula is CI=mean±tC SE. The standard error is calculated as SE=𝑠/ 𝑛, where s is 

the sample standard deviation and n is the sample size. The standard deviation is 

calculated using the sd() function as shown in Primer 3. The sample size is found 

using the length() function, which reports the number of observations in a vector.    

To find the critical t-score, we use the approach shown in Primer 5, but for the t-

distribution. Specifically, this is done using the qt(p,df) function, where p is the 

probability of interest, and df is degrees of freedom. The qt() function is analogous 

to the qnorm() function discussed in the previous section, but we need to take 

care to calculate the lower and upper interval correctly. The reason is that the 

qt() function assumes that the probability of interest is always to the left of the 

critical tC value (blue in figure below). Since confidence intervals are two-sided, the 

probability in each tail in α/2. As shown in the following figure, the left tail threshold 

is found at p=α/2, and the right tail threshold at p=1-α/2.  

 
To illustrate the calculation of 95% confidence intervals, consider the following 

vector of data  
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Mydata=c(3.89,5.85,5.97,6.10,4.44,6.12,4.24,5.63,3.48,4.32)  

Using the variables UCI and LCI to represent the upper and lower intervals 

respectively, we calculate confidence intervals using  
	 m=mean(Mydata)     #calculate sample mean  
	 n=length(Mydata)     #calculate sample size  

SE=sd(Mydata)/sqrt(n)   #calculate standard error  
LCI=m+qt(0.025,n-1)*SE  #calculate the lower interval  
UCI=m+qt(0.975,n-1)*SE  
LCI  
[1] 4.272117  
UCI  
[1] 5.735883  

#calculate the upper interval  

The lower 95% confidence interval is 4.27, and the upper 95% confidence interval is 

5.74.  

Chi-square tests  

The Chi-squared test is the first hypothesis test that we have encountered. It is used 

to test for independence among categorical variables.  For example, we might be 

interested in whether colour blindness is independent of gender.  If males are more 

likely to be colour blind than females, then we expect that the relative frequency 

of people with colour blindness would not be independent of gender. The null 

hypothesis for the Chi-squared test is that the categorical variables are 

independent of one another.    

HO: Categorical variables are independent  

HA: Categorical variables are not Independent   

For our example of colour blindness, a Chi-squared test hypothesis would be:  

HO: There is no difference in the degree of colour blindness between males 

and females  

HA: There is a difference in the degree of colour blindness between males 

and females  

For a fully-worked example, let’s look at some hypothetical data on an invasive 

species, Bythotrephes longimanus.  This invasive animal, commonly called the spiny 

water flea, entered the Great Lakes region in the mid 1980s, and caused a large 
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change in the aquatic life of many lakes.  One area where Bythotrephes invasion 

has been studied in detail is the ‘cottage country’ region in southern Ontario. The 

following table shows the number of lakes with and without cottages, as well as the 

state of Bythotrephes invasion in the lake (not invaded, invaded but not abundant, 

and invaded and dominant).   

 Not 
invaded 

Invaded, but not 
abundant 

Invaded and 
abundant 

Row  
total 

Cottages 25 60 65 150 

No 
Cottages 40 7 3 50 

Column 
total 65 67 68 200 

 

The statistical hypotheses are:  

 HO: Presence of cottages and lake invasion status are independent  

HA: Presence of cottages and lake invasion status are not independent   

The chisq.test() function in R is used to do Chi-square tests. The first step is to get 

the data into R. This can be done by creating a .csv file and importing the data as 

was done in Primer 2 or, as shown here, we can enter the data directly in  

R. Begin by creating data vectors  
cottage=c(25,60,65)  
no.cottage=c(40,7,3)  

and then create the data frame  
Mydata=data.frame('C'=cottage,'NC'=no.cottage)  

Make sure to look at your data frame to check that the variables are in the right 

order:  
> Mydata  
    C  NC  
1 25  40  
2 60   7  
3 65   3  
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The Chi-squared test is done by typing   
> chisq.test(Mydata)  
   Pearson's Chi-squared test  

 data:  Mydata   
X-squared = 69.2218, df = 2, p-value = 9.304e-16  

The output shows you  

• The type of test: Pearson's Chi-squared test   

• The Chi-squared value: X-squared = 69.2218  

• degrees of freedom: df = 2  

• p-value: p-value = 9.304e-16  

Since p<0.05, we reject our null hypothesis that Bythotrephes abundance in 

Muskoka lakes is independent of the presence or absence of cottages.  

Equivalently, we can do the same test by comparing the observed versus critical 

test statistics. The observed χ2 value is given in the output of the chisq.test() 

function, and the critical χ2 value can be found using qchisq() with a type I error 

rate of α=0.05 and degrees of freedom 2. The  qchisq() function is the analog of 

the qnorm() and  qt() function for the Chi-square distribution. Recall that 

Chisquare tests are one-tailed test and the Type I error rate refers to the area in the 

right tail as shown below.	 

  

 

	 0 5 10 15 

X 

Since the qchisq() function calculates the event threshold that corresponds to 

the probability to the left, we need to enter 1-α as the probability value.  
qchisq(0.95,2)  

0.
00

 
0.

10
 

0.
20

 

Pr
ob

ab
ili

ty
 D

en
si

ty
 



Fall 2016 

40 

[1] 5.991465  

Since the observed χ2 value (69.2) exceeds the critical χ2 value (5.99) the null 

hypothesis is rejected.    

Single-sample t-tests  

A single-sample t-test compares the mean of an observed set of data to a known 

value. To demonstrate a one-sample t-test in R, lets looks at some hypothetical 

data from a fish farm.  As a measure of stress in adult fish, the farm monitors the 

number of eggs produced per female to ensure that the fish are under optimal 

conditions for reproduction. The procedure is to randomly select ten fish during 

each egg harvest, and count the total eggs per fish. Based on previous data, the 

minimum number of eggs from a non-stressed fish is 1100. The following table shows 

the egg count from the most recent harvest.  

Fish ID Eggs/fish 

F1 778 

F2 1367 

F3 947 

F4 1002 

F5 521 

F6 656 

F7 1082 

F8 1144 

F9 735 

F10 1283 

Since the data set is small, it is easy to enter the data directly into R  
eggs=c(778,1367,947,1002,521,656,1082,1144,735,1283)  

The t-test function t.test(data,mu) is used to compute the observed t-score and 

p- value for this t-test, where the arguments data and mu define the test. For a 

single-sample t-test, data is the observed data and mu is the constant you want to 

test the mean against. Here’s what it looks like for the fish egg problem: 
t.test(eggs, mu=1100)  
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Which returns an output that looks like this:  
        One Sample t-test 
 
data:  eggs 
t = -1.6974, df = 9, p-value = 0.1238 
 
alternative hypothesis: true mean is not equal to 1100 
 
95 percent confidence interval: 
  753.5969 1149.4031 
 
sample estimates: 
mean of x  
    951.5 

 

The key values to look for in this output are the degrees of freedom, observed t-

value, and the p-value. In this case the degrees of freedom is 9, t-value is -1.697, 

and the p-value is 0.1238. The default test for the t.test() function is two-tailed, 

which means that the statistical hypotheses are:  

 

HO: There is no difference between the mean number of eggs per fish in the 

sample and the threshold of 1100  

HA: There is a difference between the mean number of eggs per fish in the 

sample and the minimum threshold of 1100.  

Here, we are not concerned with the direction of the difference. Thus, in this case, 

we would fail to reject the null hypothesis because p>0.05. The same result can be 

obtained using the test scores from the qt() function. For a two-tailed Type I error 

rate of α=0.05, the probability we seek is p=1-α/2 (see Confidence Intervals for 

explanation). In R, we type  
> qt(0.025,9)  
[1] -2.262157   

Thus, for the two-tailed test the left-side value of the critical test statistic is tC=-2.262, 

which is less than the observed value tO=-1.697. The purpose of sampling the fish, 

however, is to evaluate whether the eggs per fish are less than the minimum 

threshold, so a one-tailed hypothesis would be more appropriate. The statistical 

hypotheses are:  
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HO: The mean number of eggs per fish in the sample is not less than the 

threshold of 1100  

HA: The mean number of eggs per fish in the sample is less than the threshold 

of 1100  

A one-tailed test is still done using the t.test() function, but we must also include 

the argument, alternative, which specifies the alternative hypothesis (either 

“greater” or “less”). Since we are evaluating whether the mean number of eggs 

per fish is less than 1100, the new code looks like this:  
t.test(eggs, mu=1100, alternative=”less”)  

 and returns this output:  
         One Sample t-test 
 
data:  eggs 
t = -1.6974, df = 9, p-value = 0.06192 
 
alternative hypothesis: true mean is less than 1100 
 
95 percent confidence interval: 
     -Inf 1111.869 
 
sample estimates: 
mean of x  
    951.5  
 

Here, the t score and degrees of freedom remain the same, but the one-sided p-

value is p=0.062, which is greater than 0.05 so we fail to reject the null hypothesis 

and conclude that the observed eggs per fish are not reflective of stressed fish.  

 

Paired-sample t-tests  

A paired-sample t-test is a special type of single-sample t-test that compares 

whether the difference between pairs of data are different from a mean of zero. 

The null hypothesis is no difference in the mean between the two groups.   

HO:  There is no difference between the two groups   

HA:  There is a difference between the two groups  
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A common application of paired-sample t-tests is to evaluate a response before 

and after an event. To illustrate the test, we will use an example of coral bleaching 

in response to a period of warm sea water. In this study, coral density was 

monitored on a reef before and after the warming event. The following table 

shows the density of different species at each sampling time.  

Species  
Density (indv/m2) 

before event 
Density (indv/m2) after 

event 
Porites lutea 18.1 33.1 

Porites lobata 21.3 39.4 

Leptastrea transvera 16 36.1 

Goniastera aspera 21.6 42 

Goniastrea pectinata 21 33.2 

Leptastrea purpurea 20.3 43.6 

Platrygra ryukuenis 25.2 39.4 

Porites rus 22 39.1 

Favites halicora 22.9 37.8 

Favia favus 23.5 45.1 

Millepora intricata 24 1.2 

Millepora dichotoma 26.1 0.8 

Acropora digitifera 18.1 1.7 

Porites attenuata 24.2 12.1 

Porites sillimaniani 21 9.7 

Stylophora pistillata 19.2 10.1 

Porites cylindrica 24 4.8 

Montipora aequitub. 21.8 4.1 

Porites nigrescens 19.2 10.2 

Pocillopora damicornis 19.8 5.2 

Millepora platphylla 26.7 6.3 

Porites aranetai 23.1 8.1 

Porites horizontalata 25 4.1 

Seriatopora hystrix 14.8 2.3 

 

You can create a .csv file of the data, or enter it directly into R as follows   
PreEvent=c(18.1, 21.3, 16, 21.6, 21, 20.3, 25.2, 22, 22.9,  
23.5, 24, 26.1, 18.1, 24.2, 21, 19.2, 24, 21.8, 19.2, 19.8,  
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26.7, 23.1, 25, 14.8)  
PostEvent=c(33.1, 39.4, 36.1, 42, 33.2, 43.6, 39.4, 39.1,  
37.8, 45.1, 1.2, 0.8, 1.7, 12.1, 9.7, 10.1, 4.8, 4.1, 10.2,  
5.2, 6.3, 8.1, 4.1, 2.3)  

In this example we assume that the difference between the pairs is zero for the null 

hypotheses, but this is not always the case.  

HO: The mean difference between pre and post event densities is zero  

HA: The mean difference between pre and post event densities is not zero  

As before, the t.test(data, mu, paired) function provide the R tools for the 

test. As in the previous section, we must specify the data arguments and the value 

we are comparing against, mu. For a paired-sample t-test, we must include both 

vectors being compared, and an additional argument, paired, which specifies the 

type of test with a TRUE or FALSE statement.  
t.test(PreEvent, PostEvent, mu=0, paired=TRUE)  

The returned output looks like this:  
        Paired t-test 
data:  PreEvent and PostEvent 
 
t = 0.57225, df = 23, p-value = 0.5727 
 
alternative hypothesis: true difference in means 
is not equal to 0 
95 percent confidence interval: 
 -5.382397  9.499064 
sample estimates: 
mean of the 
differences  
               2.058333 

The summary shows p>0.05, so we fail to reject the null hypothesis. It is a good habit 

to do the analysis using both p-values and t-scores so that it becomes second 

nature. Since the null hypothesis is two-sided, we calculate a two-sided critical t-

score as  
> qt(0.975,length(PreEvent)-1) 
 [1] 2.068658  

where we use the length() function to find the number of observations. Since the 

magnitude of tC>tO, we fail to reject the null hypothesis and conclude that the 
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data do not provide strong evidence that the difference is something other than 

zero.  

Independent two-sample t-tests  

The independent t-test is our first test that involves more than a single group. These 

tests are used to evaluate whether two populations have different means, and are 

an invaluable tool for differentiating between the outcome of two trials or 

treatments. For example, imagine that you started a new job working for an 

engineering firm as an aquatic biologist and risk assessment expert. The company is 

planning to dam a large river, which will cause a decrease in water flow during the 

trout spawning season. The change in water flow might decrease the amount of 

oxygen flowing over the eggs, and thereby have an impact on egg hatching rate.  

As the biologist in the group, they have given you access to a flow tunnel to see if 

the fish eggs will hatch under the new flow regime. You take many eggs from the 

same fish stock and used 100 eggs for each trial. After 14 replicate trials at normal 

and decreased flow speeds, your preliminary data on the number of eggs that 

hatched is  

 

Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Normal 78 72 88 80 73 81 62 76 73 90 92 76 71 74 

Decreased 58 57 45 56 66 60 49 51 52 65 50 48 58 57 

 

To test if the two treatments have a different impact on the number hatching, you 

use an independent two-sample t-test. The first step is to input the data in the 

correct form. Specifically, one column must contain the data and the other 

column a coding variable indicating the treatment for each trial (i.e., in long form, 

see Primer 1 for details). This can be done by importing a .csv file into R, or by 

entering the data directly. The data vector is  
egg.count=c(78, 72, 88, 80, 73, 81, 62, 76, 73, 90, 92, 76, 71, 74, 
58, 57, 45, 56, 66, 60, 49, 51, 52, 65, 50, 48, 58, 57)  

To produce the categorical vector, a code for normal and slow water movement 

must be used.  Let N, and S denote normal and slow respectively   
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trial=c('N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N',  
'N', 'N', 'N', 'S', 'S', 'S', 'S', 'S', 'S', 'S', 'S', 'S',  
'S', 'S', 'S', 'S', 'S')  

Then combine these vectors into a single data frame  
Mydata=data.frame('Hatched'=egg.count,'Trial'=trial)  

The data set should look like  
> Mydata  
     Hatched Trial  
1 78     N  
2 72     N  
3 88     N  
4 80     N  
5 73     N  
6 81     N  
7 62     N  
8 76     N  
9 73     N  
10 90     N  
11 92     N  
12 76     N  
13 71     N  
14 74     N  
15 58     S  
16 57     S  
17 45     S  
18 56     S  
19 66     S  
20 60     S  
21 49     S  
22 51     S  
23 52     S  
24 65     S  
25 50     S  
26 48     S  
27 58     S  
28 57     S  

With the data setup in this fashion, the t.test() function is again used here, 

however the arguments are setup slightly differently. Rather than listing the two 

vectors being compared, as in the paired sample, we use the ~ symbol as follows:  
t.test(Hatched ~ Trial, data=MyData) 
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The data option in t.test() indicates where R will look for the data. Now let’s look 

at the results.  
        Welch Two Sample t-test 
 
data:  Hatched by Trial 
t = 8.1654, df = 24.348, p-value = 1.969e-08 
 
alternative hypothesis: true difference in means is  
not equal to 0 
 
95 percent confidence interval: 
 16.76380 28.09334 
 
sample estimates: 
mean in group N mean in group S  
       77.57143        55.14286   

 

The output is very similar to the outputs from single and paired-sample t-tests 

discussed in previous sections, however the alternative hypothesis has changed 

to suit the different test. Since we are comparing the means of the two 

populations, null and alternative hypotheses are:  

 

Ho: The difference between the population means is zero.  

HA: The difference between the population means is not zero.  

 

Since p<0.05, we reject the null hypothesis and conclude that stream flow 

changes the mean hatching rate of fish eggs.  
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Primer 7: Correlation & Linear Regression  
Here we will build on our new statistical skills to analyze data with two numerical 

variables using correlation or linear regression analysis. Correlation is appropriate 

when the two variables are not causal and you are just interested in the 

relationship between them. Linear regression is appropriate when you want to use 

one variable to predict the other variable.   

Correlation  

Correlation measures the tendency of two variables to change together. It answers 

the question: when one variable increases, does the other increase, decrease, or 

stay the same? The Pearson correlation coefficient is used to estimate this 

relationship, and is given by  

 

The correlation coefficient (r) varies from -1 to 1. The absolute value of the 

coefficient represents the strength of the correlation, and the sign represents the 

direction. A positive correlation means that when one variable either increases or 

decreases the other variable does the same. A negative correlation means that 

when one variable either increases or decreases the other does the opposite. A 

correlation of zero means that the variables vary independent of each other.   

Correlation analysis is done using the cor.test(x,y) function in R, where x and y 

denote the two numerical variables. Here is a set of data that compares the 

quality of canned tuna using two approaches; the H variable is the ‘Hunter L’ 

colour score, and the C variable is a consumer satisfaction index (1-6).  
H=c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)  
C=c(2.6,  3.1,  2.5,  5.0,  3.6,  4.0,  5.2,  2.8,  3.8)  

Plot the data to see the qualitative pattern  
plot(C,H,xlab="Consumer Index",ylab="Tuna Lightness")  

The correlation analysis is then done as  
MyFit=cor.test(H,C) #save correlation test to ‘MyFit’  
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which saves the results of the analysis to the variable MyFit. The results are displayed 

by typing the variable name used to store the test  
> MyFit  
1) Pearson's product-moment correlation   

2) data:  H and C  
3) t = 1.8411, df = 7, p-value = 0.1082  
   alternative hypothesis: true correlation is not equal to 0  
4) 95 percent confidence interval:  
     -0.1497426  0.8955795 
sample estimates:  
5)      cor   
   0.5711816   

The blue numbers are not part of the R output, but were added to help explain the 

output. The output indicates:  

1) The correlation coefficient is a ‘Pearson’ correlation. There are other types of 

correlation coefficients, but we are only covering Pearson correlation 

coefficients in this course.  

2) The data are given in variables H and C.   

3) The correlation test is a one-sample t-test, with tO=1.8411 on 7 degrees of 

freedom, and a p-value of p=0.1082. The alternative hypothesis indicates 

whether the test was one-tailed or two-tailed. In this case is is a two-tailed test.  

4) The 95% confidence intervals are -0.1497426 and 0.8955795.  

5) And finally, the correlation value is r=0.5711816.  

 

Linear regression  

The equation for a linear regression is given by  

Y	=a+bX 

where Y is the response variable (dependent variable) and X is the explanatory 

variable (independent variable). The coefficients a and b are the intercept and 

slope respectively.  We use linear regression to predict the response variable (Y) 

based on the explanatory variable (X).  The regression coefficients (a, b) are 

calculated from your data using the method of least squares. Linear regression is 

done using the lm(formula) function in R. This function can be used for both linear 

regression and ANOVA with just a change in how the formula is specified. For linear 
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regression, the formula is given as y~x, where both y and x are numerical variables. 

To illustrate linear regression, we will use an example data set already in R called 

‘cars’. To see the data type  
> cars  

You should see two columns speed and dist, which indicate the speed the car is 

traveling at the time of breaking and the distance the car travels before coming to 

a stop. To reduce clutter in the code, we assign these columns to new vector 

names  
speed=cars$speed dist=cars$dist  

At this point it is important to make sure that your data are numerical variables and 

not accidentally entered as categorical. Use the str() function to check the 

data type. If the variable is numerical, R reports ‘numerical’. If the variable is 

categorical, R reports ‘factor’. If you find one is categorial, then force it to be a 

numerical variable by using the colClasses option (Primer 2) when you load the 

data. Let’s plot the figure to see the qualitative trends and catch any errors.  
plot(speed,dist, xlab="Speed (mph)", ylab="Breaking Distance 
(feet)")  

The next step is to fit the linear regression  
MyFit=lm(dist~speed)  

To see the results, use the summary() function  

summary(MyFit)  
1) Call:    lm(formula = dist ~ speed)  

2) Residuals:  
     Min      1Q  Median      3Q     Max   
   -29.069  -9.525  -2.272   9.215  43.201   

3) Coefficients:  
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -17.5791     6.7584  -2.601   0.0123 *   speed         
3.9324     0.4155   9.464 1.49e-12 ***  
---  
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

4) Residual standard error: 15.38 on 48 degrees of freedom  
   Multiple R-squared:  0.6511, Adjusted R-squared:  0.6438   
   F-statistic: 89.57 on 1 and 48 DF,  p-value: 1.49e-12  
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Note that the blue numbers are not part of the R output, but were added to help 

explain the output. There is a lot of information, so let’s discuss each piece 

individually:  

1) The first lines indicate the formula and variables used in the lm() function call, 

which is handy when you save the output and come back to it at a later time.  

2) The next section shows the distribution of residuals in the form of quantiles, which 

gives a sense of the residual characteristics. The residuals are the difference 

between your data and the predicted regression line.  

3) The next section shows the estimated linear regression coefficients and two 

hypothesis tests.  

The first column of the table shows each parameter in the model (intercept, 

slope). The name of the slope parameter will vary depending on what terms 

were in the original model. The next column gives the estimate for each 

parameter. In this example, the estimated intercept is a = -17.58, and the 

estimated slope for the speed covariate is b = 3.93. We are often interested in 

whether the slope of the regression line (b) or intercept (a) is significantly different 

from zero, which can be evaluated using a one-sample t-test. The next two 

columns show the standard error of the estimate for each coefficient, as well as 

the observed t-score. The t-test can be done by comparing the observed t-score 

against the critical t-score (using the qt() function). For this example, the critical 

t-score for the slope parameter is tC=2.01 (df=48, two-tailed, α=0.05), which is less 

than the observed absolute value of tO=9.464, so we reject the null hypothesis 

that the slope is equal to zero. Equivalently, we can conduct the test using the p-

value using the pt() function, which is shown in the last column for a two-tailed 

test. Since the p-value is less than α=0.05, we come to the same conclusion. R 

includes a series of graphical significance codes next to the p-values to give you 

a quick assessment of the significance of your regression parameters.    

Coefficients:  
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -17.5791     6.7584  -2.601   0.0123 *   speed         
3.9324     0.4155   9.464 1.49e-12 ***  
---  
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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4) The last section of the output provides the Analysis of Variance information. The 

top line in this section gives residual standard error, which is a measure of the 

variation in the observations around the fitted line. The smaller this number the 

closer the observed values are to the fitted line. The next line is the R2 value of 

the regression, which you can think of as the percent variance explained. One 

problem with R-squared values is they tend to be artificially inflated with greater 

numbers of explanatory variables. If we want to compare R2 values between 

regression models with differing number of parameters, we need to take this 

effect into account and the adjusted R2 value provides a more accurate 

estimate of the percent variance explained. The final line shows the F-statistic for 

the test of whether the ratio of the explained variance over the unexplained 

variance is different from one.  The F-test in a linear regression is the same as a 

ttest of whether the slope is different than zero, but this is not general to other 

types of statistical model. Using the qf() function, the critical F-score is FC=4.04. 

Since the observed F-score is greater than the critical F-score, we reject the null 

hypothesis that the ratio is equal to one. Equivalently, we could perform the test 

using the p-value provided using the pf() function.  

After fitting the linear regression, plot both the raw data and fit line to see if the fit 

statistical model makes sense. Begin by plotting the raw data 

plot(speed,dist, xlab="Speed (mph)", ylab="Breaking Distance 
(feet)")   

The fit linear regression can be added using the abline(object) function, which 

plots a line with the intercept (a) and slope (b) from the fit linear model given in 

object.  
abline(MyFit, col='blue',lwd=2)  

The plot should look like the figure below.  
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Evaluating assumptions of linear regression  

There are four assumptions that need to be met before the results of a linear 

regression can be trusted.  

1) The relationship between the independent and dependent variable is linear  

2) The residuals are Normally distributed  

3) The residuals have equal variance across the range of the independent 

variable (heteroscedasticity)  

4) The residuals are independent.   

Evaluating the assumptions of linear regression begins with a qualitative assessment 

using two kinds of plots. The first is a plot of residual by predicted values, and the 

second is a histogram of residuals. A plot of the residuals (y-axis) by the predicted 

value (x-axis) allows you to visualize the assumptions of linearity and 

heteroscedasticity. This is done using the plot(MyFit,type) function, where MyFit 

is the fit linear regression object, and type is the diagnostic plot (type=1 for residual 

plots). We write  
plot(MyFit,1) #residual plot  

The residual by predicted plot shows a moving average line (red). While the 

moving average is helpful for visualizing the qualitative trend, don’t over interpret 

the patterns because we are just looking for large departures. The residual by 
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predicted plot for the cars data suggest that the residual variance increases with 

higher predicted values suggesting heteroscedasticity, but no strong indication 

that there is a departure from linearity. Make sure you can pick up these 

conclusions from the figure.  

Residuals vs Fitted 

 
	 0 20 40 60 80 

Fitted values lm(dist 
~ speed) 

A histogram of the residuals can be used to evaluate qualitatively the assumption 

of Normality. Start by creating a histogram of residuals  
hist(residuals(MyFit),main="",xlab="Residuals",freq=FALSE)  

where the function residuals(MyFit) is used to extract the residuals from the 

MyFit object, and the new option freq tells the function to plot the proportion rather 

than counts. Since the plot shows the residuals on a proportional scale, we can 

add a line that represents what a normal distribution with the same standard 

deviation as the residuals would look like. Comparing the line against the histogram 

provides a visual evaluation for the assumption of Normality. To add the line, we 

create a new vector using the dnorm()function. 
MyRes=residuals(MyFit)  
xfit=seq(min(MyRes),max(MyRes),length=100) #new x variable 
yfit=dnorm(xfit,0,sd(MyRes))   #predicted Normal  lines(xfit, 
yfit, col="blue")   #add a blue line  

The following figure shows the residual histogram and predicted Normal distribution 

for the cars data, and suggests that the assumption of Normality is reasonable.  
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Residuals 

The above two plots give a qualitative evaluation of linear regression assumptions. 

Quantitative evaluations of assumptions, however, are difficult with the exception 

of Normality. To test for Normality, we can perform a Shapiro-Wilkes test using the 

shapiro.test() function.  The function uses the residuals from your fit model.  
shapiro.test(residuals(MyFit))   

Shapiro-Wilk normality test  
data:  residuals(MyFit) W = 0.92234, p-value = 0.1099  

The last line of the output gives the test results. Since p>0.05, we fail to reject the null 

hypothesis and conclude that there is not evidence of a deviation from Normality.  
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Primer 8: Single-factor ANOVA  
Analysis of variance (ANOVA) is similar to linear regression, but uses categorical 

rather than numerical variables as independent variables. In fact, there is no 

difference in the machinery used to fit ANOVA models and linear regressions, so we 

can use the now familiar lm() function. The only difference we need to worry 

about in R is how the data frame is structured, and some nuances of hypothesis 

testing. A single-factor ANOVA means that we are interested in one factor (e.g., 

nutrient concentrations), but there is more than two levels in the factor (e.g., 0µM, 

1.2µM, 3.2µM, and 5µM of Nitrogen). Let’s start by reminder ourselves of the long 

form data structure.  

Data frames for ANOVA  

Similar to a two-sample t-test (which is just a one factor ANOVA with two levels!), 

the data must be in long form (also called stacked form) with one column as the 

response variable (dependent variable) and one column as a coded categorical 

variable (independent variable). Consider the following example that looks at the  

influence of substrate type on the growth of benthic algae. The table is presented 

in short form. Each column is a different substrate and each row is a replicate.  

Sand Silt Pebbles Glass 

1.45 1.24 2.24 1.18 

0.76 1.93 3.71 0.59 

1.11 1.96 2.92 0.52 

1.71 2.2 3.01 -0.74 

0.97 3.93 6.33 -0.99 

A long form version of the dataset can be created in Excel and then imported as a 

.csv file. Alternatively, it can be entered directly into R in long form using data 

frames. That is what we will do here. To create the long form data set, first create 

the independent and categorial vectors  
growth=c(1.45,0.76,1.11,1.71,0.97,1.24,1.93,1.96,2.20,3.93,2.24,3.7
1,2.92,3.01,6.33,1.18,0.59,0.52,-0.74,-0.99)  
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substrate=c('sand','sand','sand','sand','sand','silt','silt', 
'silt','silt','silt','pebbles','pebbles','pebbles','pebbles', 
'pebbles','glass','glass','glass','glass','glass')  
then combine these into a data frame  
MyData=data.frame('growth'=growth, 'substrate'=substrate)  

Type MyData to see the contents of the data frame, and compare this with the 

above table.  
   growth substrate  
1    1.45      sand  
2 0.76      sand  
3 1.11      sand  
4 1.71      sand  
5 0.97      sand  
6 1.24      silt  
7 1.93      silt  
8 1.96      silt  
9 2.20      silt  
10 3.93      silt  
11 2.24   pebbles  
12 3.71   pebbles  
13 2.92   pebbles  
14 3.01   pebbles  
15 6.33   pebbles  
16 1.18     glass  
17 0.59     glass  
18 0.52     glass  
19 -0.74     glass  
20 -0.99     glass  

To get an impression of the influence of substrate type on algal growth, begin by  

plotting the data using the boxplot() function (see Primer 4 for more information)  
boxplot(growth~substrate, ylab='Algal Growth Rate 
(/d)',xlab='Substrate Type')  
The plot suggests that algae have higher growth rates on pebbles, and lower on 

glass. Let’s run the ANOVA model to see whether these trends are statistically 

significant.  
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Fitting the ANOVA model  

The ANOVA model is fit using the lm() function just as was done for linear 

regression, but the X variable is now categorial. This difference is dealt with ‘behind 

the scenes’ in R, so we do not need to make any changes to the formula.  
MyFit=lm(growth~substrate, data=MyData)  

The data=MyData options tells R where to look for the variables. The output is  

As with the two-sample t-test, the statistical tests presented are all relative to one 

factor level. In this example, they are all relative to the ‘glass’ treatment, which is 

shown by the fact that it is missing from all of the terms in the first column (e.g., 

substratepebbles). Let’s go through the output line by line.  

1. The first line is labeled (Intercept), which in this example is the glass substrate  

(analogous to the intercept in a two-sample t-test). The value under the 

‘Estimate’ heading is the least square means (LS means) estimate from the fit 

model. The LS mean per-capita algal growth rate is 0.1120 per day. The t-test 

evaluates the hypothesis that the estimate is different from zero. It is a twotailed 

test, and may not always be the one you want to evaluate. In this example, 

summary(MyFit)  
   Call:    lm(formula = growth ~ substrate, data 
= MyData)  

   Residuals:  
       Min      1Q  Median      3Q     Max   
   -1.4020 -0.6545 -0.1600  0.4255  2.6880   

   Coefficients:  
                    Estimate Std. Error t value Pr(>|t|)      
1)(Intercept)        0.1120     0.4770   0.235  0.81733      
2)substratepebbles   3.5300     0.6746   5.233  8.2e-05 ***  
3)substratesand      1.0880     0.6746   1.613  0.12631      
4)substratesilt      2.1400     0.6746   3.172  0.00591 **     
---  
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 1.067 on 16 degrees of freedom  
Multiple R-squared:  0.6516, Adjusted R-squared:  0.5862   
F-statistic: 9.973 on 3 and 16 DF,  p-value: 0.0006026  
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p>0.05, so we fail to reject the null hypothesis that the growth rate is not different 

from zero.  
Coefficients:  
                  Estimate Std. Error t value Pr(>|t|)      
(Intercept)        0.1120     0.4770   0.235  0.81733  

2. The second line is the first of the treatment levels relative to the glass treatment. 

The LS mean algal growth rate is 3.53 per day more than glass, which means the 

actual growth rate estimate is 3.53+0.112=3.642 per day. The t-test evaluates the 

hypothesis that the difference in algal growth rate relative to the glass is not 

zero. Since p<0.05, we can conclude that the pebbles substrate had an 

influence on growth relative to glass.  
substratepebbles   3.5300     0.6746   5.233  8.2e-05 ***  

3. The third line is the next treatment level relative to the glass treatment. The LS 

mean algal growth rate is 1.088 per day more than glass, which means the 

actual growth rate estimate is 1.088+0.112=1.2 per day. Since p>0.05, we fail to 

reject the null hypothesis.  
substratesand      1.0880     0.6746   1.613  0.12631      

4. The last line is the final treatment level relative to the glass treatment. The LS 

mean algal growth rate is 2.14 per day more than glass, which means the 

actual growth rate estimate is 2.14+0.112=2.25 per day. Since p<0.05, we can 

conclude that the silt substrate had an influence on growth relative to glass.  
substratesilt      2.1400     0.6746   3.172  0.00591 **   

The remainder of the output is interpreted the same as for a linear regression (see 

Primer 7 for details).   

The output from the summary() function above provides t-test evaluations of the 

term against zero for each level. However, it is the F-table that will let you evaluate 

the general significance of the factor (substrate in this case) in the model. Use the 

aov() function to get the full F-table  

summary(aov(MyFit))  
               Df Sum Sq Mean Sq F value    Pr(>F)     
substrate    3 34.033 11.3443  9.9726 0.0006026 *** 
Residuals   16 18.201  1.1376                        
---  
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1   
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The line of interest is the one labelled ‘substrate’, which is the hypothesis test for the 

substrate factor. Since p<0.05, we reject the null hypothesis and conclude that the 

substrate had an influence on the per-capita algal growth rate.   

Evaluating the assumptions of ANOVA  

Evaluating the assumptions for one-factor ANOVA is similar to linear regression, but 

we only need to consider the assumptions of Normality and Homoscedasticity. To 

evaluate Normality, we use a histogram of the residuals and the Shapiro-Wilkes test 

for Normality. The residuals are plotted using the hist() function (see Primer 4 for 

details)  
hist(residuals(MyFit),main="",xlab="Residuals", freq=FALSE)  

and add the predicted Normal distribution using the same process as introduced in 

Linear regression (Primer 7).  
MyRes=residuals(MyFit)  
xfit=seq(min(MyRes),max(MyRes),length=100) #new x variable  
yfit=dnorm(xfit,0,sd(MyRes)) #predicted Normal lines(xfit, yfit, 
col="blue") #add a blue line  
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Residuals 

The residual plot suggests that the residuals are not symmetrical. To quantify this, we 

perform a Shapiro-Wilkes test for Normality using the shapiro.test() function.   

The function requires the residuals from your fit model, which is extracted using the 

residuals() function.  
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shapiro.test(residuals(MyFit))  Shapiro-Wilk normality test  
data:  residuals(MyFit) W = 0.92234, p-value = 0.1099  

The last line of the output gives the test results. Since p>0.05, we fail to reject the null 

hypothesis and conclude that there is not evidence of a deviation from Normality.  

To evaluate homoscedasticty, we use a residual plot and the Bartlett test. We can 

generate a residual plot using the plot() function on your fit statistical model.  
plot(MyFit,1)  
Here the number 1 indicates that we want a residual plot. The resulting plot is  

 

 

The x-axis of the figure is the predicted value shown in the summary output of the 

model, and the y-axis is the residuals. Looking at each of the four groups, the 

residuals seem to have different variances, so we might need to be concerned 

about homoscedasticity. To quantify this, we perform a Bartlett’s test for 

homoscedasticity using the bartlett.test() function. This function requires the 

same formula used in the original call to the  lm() function.  

bartlett.test(growth~substrate, data=MyData)  
Bartlett test of homogeneity of variances  

data:  growth by substrate  
Bartlett's K-squared = 5.9996, df = 3, p-value = 0.1116  

The last line of the output gives the test results. Since p>0.05, we fail to reject the null 

hypothesis and conclude that there is not evidence of a deviation from 

homoscedasticity.   
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Group tests using TukeyHSD  

The F-test indicated that the substrates had an impact on algal growth. To identify 

the groups that are different, we need to do a series of contrast statements. One 

approach is to use Tukey’s Honest Significant Difference test (TukeyHSD), which 

compares all possible pair-wise contrasts. The TukeyHSD automatically adjusts for 

the multiple contrasts to maintain the family-wise Type I error rate, which means we 

can evaluate each test using the family-wise error rate (here it is 5%).  The TukeyHSD 

test is run in R using the TukeyHSD() function.  

TukeyHSD(aov(MyFit))  
  Tukey multiple comparisons of means  
    95% family-wise confidence level Fit: 

aov(formula = my.fit)  

$substrate  
                diff        lwr        upr     p adj pebbles-
glass  3.530  1.6000921  5.4599079 0.0004306 sand-glass     
1.088 -0.8419079  3.0179079 0.3994762 silt-glass     2.140  
0.2100921  4.0699079 0.0272350 sand-pebbles  -2.442 -4.3719079 
-0.5120921 0.0110907 silt-pebbles  -1.390 -3.3199079  
0.5399079 0.2078944 silt-sand      1.052 -0.8779079  2.9819079 
0.4276917  

The aov() function is used to pass the proper elements of the ANOVA to the 

TukeyHSD() function. Each line of the output gives a test between two substrate 

types. For example, the fourth line tests the hypothesis that the growth rate is not 

different between the sand and pebble substrates. Since p<0.05, we conclude that 

the per-capita growth rates are different between the two substrates.   

Group test using contrasts  

With a large number of groups, the TukeyHSD test becomes problematic because 

the number of possible contrasts gets too large. A second approach is to use 

contrast statements and just test the group differences you are interested in. For this 

approach you adjust the Type I error rate of the contrasts (αC) manually to ensure 

maintain the overall Type I error rate of the ANOVA (αF). The contrasts are done 

using the contrast() function in R. The contrast function is in the ‘contrast’ library, 

so we will need to first install the library and then load the library. The contrast 

library is installed using  
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install.packages("contrast")  

Note that you only need to do this once. After the library is installed, all you need to 

do is load the contrast library each time you want to use it. The library is loaded 

using the library() function  
library("contrast")  

To run the contrasts, we need to specify the groups to compare. This is done using 

contrast(MyFit,a,b) , where a and b are the group names and MyFit is your fit 

lm object. The a and b lists are setup so that a represents the list of group names for 

the left side of the contrast, and b represents the list of group names for the right 

side of the contrast. For example, if we wanted to compare the group pebbles 

with each of the groups glass, sand and silt, we would write  
library("contrast")   

contrast(MyFit,list(substrate="pebbles"),list(substrate="glass")) 
contrast(MyFit,list(substrate="pebbles"),list(substrate="sand")) 
contrast(MyFit,list(substrate="pebbles"),list(substrate="silt"))  
where each line is it’s own contrast. The above contrast statements give the 

following output  
  Contrast      S.E.     Lower    Upper    t  df Pr(>|t|)  
     3.530 0.6745524  2.1000127 4.959987 5.23 16   0.0001  
     2.442 0.6745524  1.0120127 3.871987 3.62 16   0.0023  
     1.390 0.6745524 -0.0399873 2.819987 2.06 16   0.0560  

The next step is to calculate the Type I error rate for each contrast.   
alphaF=0.05  
alphaC=1-(1-alphaF)^(1/3)  
alphaC  
[1] 0.01695243  

Since there are three contrasts, αC=0.01695. With this adjusted criterion, we would 

reject the null hypothesis for the first two contrasts(pebbles-glass, pebbles-sand),  

and fail to reject the null hypothesis for the last contrast (pebbles-silt). 	 
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Primer 9: Two-factor ANOVA  
The previous primer considered ANOVA’s where there was just a single factor.  

However, it is often the case that you are interested in the influence of two factors 

(e.g., nutrients and temperature), and whether they interact with each other (e.g., 

does high temperature amplify the impact of nutrients?). The overall analysis for 

two factors is similar to a single factor, but they differ in some of the details.  

Creating data frames for ANOVA  

Similar to a single-factor ANOVA, the data must be in the long form with one 

column as the response variable (dependent variable) and two columns as coded 

categorical variables (independent variables). Consider the following example 

that looks at the influence of pine tree sap on the growth of wood fungus. Different 

species of pine trees contain different concentrations of antifungal agents. The 

following table shows growth rates (mm/day) of wood fungus in agar (a standard 

medium to evaluate growth) containing sap from two species in isolation, a mix of 

each, and a control (i.e., no tree sap). Each row is a replicate.  

Treatment A 
Pinus taeda 

Treatment B 
Pinus pinea 

Treatment C  
Pinus taeda & 

Pinus pinea 

Treatment D 
Control 

3.08 3.22 2.31 4.99 

3.52 2.42 2.51 5.21 

2.61 2.48 2.51 5.03 

2.36 2.45 2.15 5.29 

2.66 2.58 2.09 5.02 

3 2.67 2.3 4.06 

Since the data set has observations for all combinations of presence/absence for 

both species, it is a two-factor experiment as shown in the following table  
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 Pinus taeda 

absent present 

Pinus 
pinea 

absent Treatment D Treatment A 

present Treatment B Treatment C 

To create the data set, first create the independent vector and the two 

categorical vectors.  
Growth=c(3.08, 3.52, 2.61, 2.36, 2.66, 3.00, 3.22, 2.42, 2.48,  
2.45, 2.58, 2.67, 2.31, 2.51, 2.51, 2.15, 2.09, 2.30,  4.99,  
5.21, 5.03, 5.29, 5.02, 4.06) 
  
P.taeda=c('yes', 'yes', 'yes', 'yes', 'yes', 'yes', 'no',  
'no', 'no', 'no', 'no', 'no', 'yes', 'yes', 'yes', 'yes',  
'yes', 'yes', 'no', 'no', 'no', 'no', 'no', 'no')  
 
P.pinea=c('no', 'no', 'no', 'no', 'no', 'no', 'yes', 'yes',  
'yes', 'yes', 'yes', 'yes', 'yes', 'yes', 'yes', 'yes', 'yes',  
'yes', 'no', 'no', 'no', 'no', 'no', 'no')  

Here we have used ‘yes’ to denote that the tree sap was present for a species, 

and ‘no’ to denote absent. Even though two of the vectors are categorical, all 

three can be combined into a single a data frame  
MyData=data.frame('Growth'=Growth, 'P.taeda'=P.taeda,  
'P.pinea'=P.pinea)  

Type ‘MyData’ to see the contents of the data frame, and compare this with the 

two-factor table shown above.  
MyData  
   Growth P.taeda P.pinea  
1 3.08     yes      no  
2 3.52     yes      no  
3 2.61     yes      no  
4 2.36     yes      no  
5 2.66     yes      no  
6 3.00     yes      no  
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7 3.22      no     yes  
8 2.42      no     yes  
9 2.48      no     yes  
10 2.45      no     yes  
11 2.58      no     yes  
12 2.67      no     yes  
13 2.31     yes     yes  
14 2.51     yes     yes  
15 2.51     yes     yes  
16 2.15     yes     yes  
17 2.09     yes     yes  
18 2.30     yes     yes  
19 4.99      no      no  
20 5.21      no      no  
21 5.03      no      no  
22 5.29      no      no  
23 5.02      no      no  
24 4.06      no      no  

The new data frame has the same structure as we used for one-factor ANOVA’s, 

but with two categorical variables. Let’s begin by plotting the data with the 

boxplot() function as before  
boxplot(Growth~P.taeda+P.pinea, ylab='Fungal Growth (mm/ 
day)',xlab='Presence/Absence of Pine sap (P.taeda:P.pinea)')  

 

  
It is easy to see that the fungal growth rate decreases with the presence of sap 

from either species of pine, but it is more difficult to see if there is an interaction 
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between the species. To see the interaction more clearly, we use the 

interaction.plot(X1,X2,Y) function, where X1 and X2 are the categorical 

predictor variables, and growth is the quantitative response variable. The 

interaction plot shows the mean of each treatment cell for each level in the X1 

variable on x-axis. Each level of the X2 predictor variable is shown with a different 

style of line, and a different number.   
interaction.plot(P.taeda,P.pinea,Growth, type='b')  

 

P.taeda 

The interaction plot shows that the presence of sap from either species of pine 

reduces the fungal growth rate, and that there is a negative interaction between 

the species such that the presence of both is not as effective as you would expect 

from the reduction in growth caused by the species in isolation.  

Fitting the ANOVA model  

The ANOVA model is fit using the lm() function as before. For a two-factor ANOVA, 

we must add both predictor variables to the formula, as well as their interaction. 

This is done using the ‘+’ and ‘:’ symbols as y�X1+X2+X1:X2, where the ‘+’ symbol 

separates the various independent variables. Writing the variable name denotes a 

main effect, and the ‘:’ symbol denotes an interaction. A short form notation for 

the formula is to use the ‘*’ symbol as y�X1*X2, which represents both the additive 

and interactive effects.  (i.e., y�X1*X2 is the same as y�X1+X2+X1:X2).  
MyFit=lm(Growth~P.taeda + P.pinea + P.taeda:P.pinea, data=MyData)  

Alternatively, you can write  

1 

1 

2.
5 

3.
0 

3.
5 

4.
0 

4.
5 

5.
0 

m
ea

n 
of

  G
ro

w
th

 

2 

2 

no yes 

   P.pinea 
1 
2 

no 
yes 



Fall 2016 

68 

MyFit=lm(Growth~P.taeda * P.pinea, data=MyData)  

The data=MyData options tells R where to look for the variables. The output is the 

same as for a single-factor ANOVA  

The output reveals that the sap from both pine species, as well as the interaction, 

are significantly different from the control. Let’s work through this line by line.  

1. The first line is labeled (Intercept), which in this example is the control treatment  

 (analogous to the intercept in an independent t-test). The value under the 

‘Estimate’ heading is the least square means (LS means) estimate from the fit 

model. The LS mean fungal growth rate is 4.93 mm/day. The t-test test is the 

hypothesis that the estimate is different from zero. It is a two-tailed test, and may 

not always be the one you want to evaluate. In this example, the growth rate of 

the control is different from zero (p<0.05).  

2. The main effect of Pinus taeda sap on fungal growth relative to the control. The 

LS mean fungal growth rate is 2.06 mm/day less than the control, which means 

the actual growth rate is 2.87 mm/day (try this for yourself). The t-test tests the 

summary(MyFit)  
Call: lm(formula = Growth ~ P.taeda * P.pinea, data = 
MyData)  

Residuals:  
     Min       1Q   Median       3Q      Max   
-0.87333 -0.19292  0.01583  0.19833  0.64833   

Coefficients:  
                         Estimate Std. Error t value Pr(>|t|)     
1) (Intercept)             4.9333     0.1428  34.548  < 2e-16  
2) P.taedayes             -2.0617     0.2019 -10.209 2.23e-09  
3) P.pineayes             -2.2967     0.2019 -11.373 3.49e-10  
4) P.taedayes:P.pineayes   1.7367     0.2856   6.081 6.07e-06 
---  
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 0.3498 on 20 degrees of freedom  
Multiple R-squared:  0.9118, Adjusted R-squared:  0.8986   
F-statistic: 68.96 on 3 and 20 DF,  p-value: 1.006e-10  

Coefficients: 
                Estimate Std. Error t value Pr(>|t|)      
(Intercept)       4.9333     0.1428  34.548  < 2e-16 ***  
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hypothesis that the difference in fungal growth rate relative to the control is not 

zero. Since p<0.05, we can conclude that the P. taeda sap had an influence on 

fungal growth.  
P.taedayes           -2.0617     0.2019 -10.209 2.23e-09 ***  

3. The main effect of Pinus pinea sap on fungal growth relative to the control. The 

LS mean fungal growth rate is 2.30 mm/day less than the control, which means 

the actual growth rate is 2.63 mm/day. Since p<0.05, we can conclude that the 

P. pinea sap had an influence on fungal growth.  
P.pineayes           -2.2967     0.2019 -11.373 3.49e-10 ***  

4. The final line shows the interaction between the P. taeda and P. pinea sap on 

fungal growth relative to the control and relative the main effects of each. If the 

two tree species were purely additive, then the fungal growth rate would be 

4.36 slower than the control (2.06+2.30). The LS mean fungal growth rate is 1.74 

mm/day faster than the purely additive case, which means the actual growth 

rate is 2.31 mm/day. The t-test tests the hypothesis that the interaction, which is 

the difference between the observed growth and the purely additive case, is 

zero. Since p<0.05, we conclude that there is an interaction between the sap of 

the two species.   
P.taedayes:P.pineayes   1.7367     0.2856   6.081 6.07e-06 ***  

The remainder of the output is interpreted the same as for an ANOVA.  

The output from the summary() function provides t-test evaluations of the term 

against zero, which is not always useful. The F-table, however, will let you evaluate 

the general significance of each factor in the model, rather than just a test against 

zero. To get the F-table, we can use the aov() function:  
summary(aov(MyFit))  
                Df  Sum Sq Mean Sq F value    Pr(>F)      
P.taeda          1  8.5443  8.5443  69.839 5.900e-08 ***  
P.pinea          1 12.2408 12.2408 100.054 3.149e-09 ***  
P.taeda:P.pinea  1  4.5240  4.5240  36.978 6.066e-06 ***  
Residuals       20  2.4468  0.1223                    
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1   

The first line is the F-test for main effects of Pinus taeda, the second line is the F-test 

for the main effects of Pinus pinea, and the last line in the F-test for the interaction.  



Fall 2016 

70 

Evaluating the assumptions of ANOVA  

The evaluation of assumptions for two-factor ANOVA’s is the same as for onefactor 

ANOVA’s. To evaluate Normality, we use a histogram of the residuals and the 

Shapiro-Wilkes test for Normality. The residuals are plotted using the hist() 

function (see Primer 4 for details)  
hist(residuals(MyFit),main="",xlab="Residuals", freq=FALSE)  

and add the predicted Normal distribution using the same process as introduced in 

Linear regression (Primer 7).  
MyRes=residuals(MyFit)  
xfit=seq(min(MyRes),max(MyRes),length=100) #new x variable  
yfit=dnorm(xfit,0,sd(MyRes)) #predicted Normal 
lines(xfit, yfit, col="blue") #add a blue line   
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Residuals 

The residual plot suggests that the residuals are symmetrical. To quantify this, we 

perform a Shapiro-Wilkes test for Normality using the shapiro.test() function.  

shapiro.test(residuals(MyFit))  Shapiro-Wilk normality test 
data:  residuals(MyFit) W = 0.96099, p-value = 0.4586 

Since p>0.05, we fail to reject the null hypothesis and conclude that there is not 

evidence of a deviation from Normality.  

To evaluate homoscedasticty, we use a residual plot and the Bartlett test.  
plot(MyFit,1)  
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Residuals vs Fitted 

 
	 2.5 3.0 3.5 4.0 4.5 5.0 

Fitted values 

The x-axis of the figure is the predicted value shown in the summary output of the 

model, and the y-axis is the residuals. Looking at each of the four groups, the 

residuals seem to have similar variances. To quantify this, we perform a Bartlett’s 

test for homoscedasticity. Since there are two categorical variables, we need to 

use a slightly modified version of the function  
bartlett.test(split(Growth,list(P.taeda,P.pinea)), data=MyData)  
   Bartlett test of homogeneity of variances  
data:  split(Growth, list(P.taeda, P.pinea))  
Bartlett's K-squared = 4.0181, df = 3, p-value = 0.2595  

The split() function is used here to indicate the cells for each combination of the 

categorical variables. The last line of the output gives the test results. Since p>0.05, 

we fail to reject the null hypothesis and conclude that there is not evidence of a 

deviation from homoscedasticity.  

Group test using contrasts  

The fit ANOVA model shows a significant interaction, which means that the sap 

from the two species of pine have a non-additive impact on fungal growth rates. It 

also means that the main effects (e.g., P. taeda influences fungal growth rates) are 

not directly interpretable because it includes treatments with the other species as 

well. For example, it could be that P. taeda in isolation does not influence fungal 

growth rates, but in the presence of P. pinea it does. Contrasts provide a way to 

disentangle interactions by comparing cells in the ANOVA table (e.g., P. taeda in 

isolation versus control).   

-1
.0

 
-0

.5
 

0.
0 

0.
5 

R
es

id
ua

ls
 

24 

2 
7 



Fall 2016 

72 

Similar to single-factor ANOVA, contrast tests are done using the contrast() 

function. We begin by loading the contrast library  
library("contrast")  

The groups are specified by indicating the levels of interest for both categorical 

variables. In the following example we are testing the contrasts of whether adding 

the sap from both species together is different than each sap on it’s own. This first 

one tests whether both saps are different from just P.taeda  
#tests whether both saps are different from just P.taeda  
a=list(P.taeda=c("yes"), P.pinea=c("yes")) 
b=list(P.taeda=c("yes"), P.pinea=c("no"))  
contrast(MyFit,a,b)  

lm model parameter contrast  
 Contrast     S.E.      Lower      Upper     t df Pr(>|t|)  
    -0.56 0.201942 -0.9812435 -0.1387565 -2.77 20   0.0117   

and this second one tests whether both saps are different from just P.pinea  
#tests whether both saps are different from just P.pinea  
a=list(P.taeda=c("yes"), P.pinea=c("yes")) 
b=list(P.taeda=c("no"), P.pinea=c("yes"))  
contrast(MyFit,a,b)  

lm model parameter contrast  

 Contrast     S.E.      Lower      Upper     t df Pr(>|t|)    
-0.325 0.201942 -0.7462435 0.09624355 -1.61 20   0.1232  

The next step is to calculate the Type I error rate for each contrast.   
alphaF=0.05  
alphaC=1-(1-alphaF)^(1/2)  
alphaC  
[1] 0.02532057  

Since there are two contrasts, αC=0.0253. Since p<αC for the first test (reject the null 

hypothesis), and p>αC for the second test (fail to reject the null hypothesis), we can 

conclude that having both saps together slows down fungal growth rates 

compared to just P.taeda, but not compared to just P.pinea. Have a look back at 

the interaction plot to see the effect size for these two contrasts.   
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Reference Cards for R  
Some useful R tips  

• > is the prompt from R on the console, indicating that it is waiting for you to 

enter a command.   

• Each command entered by hitting <return> (<enter> on a Windows PC) is 
executed immediately and often generates a response; commands and 
responses are shown in different colours and this really helps when you are 
trying to find things on the console after a long session.   

• When you hit <return> in the console (<enter> on a Windows PC) before a 
command is completely typed a + will appear at the beginning of the next 
line. Continue typing and hit <return> (<enter> on a Windows PC) when the 
command is finished to execute it.  

• R is case sensitive. For example, House is a different variable from house.  

• R functions are followed by (), with or without something inside the brackets 

depending on the function (e.g., min(x) gives the minimum value of the x 

vector).  

• Don’t worry about spaces around symbols in a typed line; they do not have 

any effect, so win=3+4 is the same as win = 3 + 4.  

• To assign variables, use the = assignment operator; xxx = yyy assigns yyy to a 

new object xxx; some advanced R users and books use <- instead of = but 

this is equivalent for our purposes and = is easier to remember and type.  

• Pressing the up arrow � in the console scrolls back through previous 
commands that you have entered; you can either press <return> (<enter> on 
a Windows PC) to execute the command again or edit it to correct a mistake. 
Very handy.  

• If you make a mistake when typing and R returns ‘syntax error’ or has a ‘+’ sign 
rather than the prompt, press the escape key. This will give you a fresh prompt.  

• There is a Reference Card at the end of this primer that shows a list of 
common arithmetic operations and functions covered.  
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Data functions 

Function Description Primer 

c( x, y, z, ... ) 
Creates a data vector from the x, y, z, ...  
entries. 

1 

data.frame(‘X’=x ,‘Y’=y, ….) 

Creates a data frame, which is a special 
array in R that gives names to columns of 
data. The text in quotes is the name, and 
the variable (e.g., x) contains the data. 

2 

factor( x , order ) 

Used to reorder the factor levels in a 
categorical variable. x is the vector you 
want to reorder and order is the order you 
want the categories. Particularly useful for 
changing the order of factor levels on 
boxplots. 

4 

file.choose() 
Brings up a menu that allows you to select 
a file. Don’t enter anything in the braces.  
Use in conjunction with read.csv(). 

2 

head( data ), tail( data ) 
The head() function displays the first 6 rows 
of the dataset stored in data, and the 
tail() function displays the last 6 rows. 

2 

IQR( x ) Calculates the interquartile range of x. 3 

library( name ) 

Some commands are in specialized 
libraries, which are loaded using the 
library() function, where name is the title 
of the library. 

6 

length( x ) Returns the number of observations in x. 5 

levels( x ) Returns the categorical levels in x. 4 
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Function Description Primer 

max( x ), min( x ) 
Returns the maximum/minimum value in 
the x vector 

1, 3 

mean( x ), median( x ),  
variance( x ), sd( x ) 

Returns the mean, median, variance or 
standard deviation of the x vector. 

1, 3 

names( data ) 

Displays the column names of the dataset 
stored in data. Use the $ sign to then 
access a particular column (e.g., data 
$MetabolicRate). 

2 

plot( x , y ) 
Creates a scatter plot of the x and y 
vectors. See Plotting options to customize 
your plots. 

1, 4 

quantile( x , y ) 
Calculates the quantile(s) of x as 
described in y. y can be a number or 
vector, but only contain proportions. 

3 

read.csv( location ) 
Loads a .csv file from the source given in 
location. Use in conjunction with 
file.choose(). 

2 

sample( x , size ) 
Returns a random subset of length size 
from the entries in the x vector. 

1 

sum( x ) 
Returns the sum of all entries in the x 
vector. 

1 

str( data ) 
Displays information about the data 
stored in each column of the dataset  
data.  

2 

subset( data , var==level ) 

Creates a new data frame that is a subset 
of an original data frame called data. var 
is the column name of your variable, and 
level is a specific level in the variable. 

2 

summary( x ) 
Returns a number of descriptive statistics 
for the x vector. 

3 
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Arithmetic, indexing and Logic Operators  

Symbol Description 

+ Addition 

- Subtraction 

/ Division 

* Multiplication 

^ 
Raise to the power (i.e., x^y is x raised to the power y) 

= Assigns a value 

[ , ] 

Used to access entries of data structures such as vectors, arrays and 
matrices. Commas are used to separate dimensions. 

( ) 

Used for order of operations (i.e., do what is in the brackets first) and for 
the arguments of functions. 
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Statistical functions 

Function Description Primer 

aov( fit ) 
Extracts the ANOVA table and F-test from 
a fit lm object. 

7 

bartlett.test( y~x ) 
Performs a Bartlett’s test for 
homoscedasticity. The formula here is the 
same as for the original lm model. 

7 

contrast( fit ,a,b) 

Performs a series of group contrasts from 
the lm object fit. The left side of the 
contrasts are given in a, and the right side 
are given in b. 

7 

pbinom( x , n, s ) 
qbinom( p , n, s ) 

Calculates the probability of X ≤ x 
successes from a Binomial distribution with 
n trials and a success rate of s. qbinom() is 
the related function that calculates the 
event range X ≤ x for a given probability 
p. 

5 

pnorm( x , m, sd ) qnorm( 
p , m, sd ) 

Calculates the probability of an event X ≤ 
x from a Normal distribution with mean m 
and standard deviation sd. qnorm() is the 
related function that calculates the event 
range X ≤ x for a given probability p. 

5 

gvlma( MyFit ) 
Used to assess the assumptions of the 
linear regression or ANOVA given in MyFit.  

6 

qt(1-α,df)  

 or   

qt(1-α/2,df)  

Displays the critical value from a 
tdistribution given a confidence value 
and the degrees of freedom.  For a one-
tailed t-test, the confidence value is 1-α.  
The two-tailed test requires 1-α/2 for the 
right hand tail and α/2 for the left hand 
tail.  

5 

qchisq(1-α,df) 
Displays the critical chi-squared value for 
a given confidence value and degrees of 
freedom.  

5 
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Function Description Primer 

lm(y-µ~1)  

(one sample t-test) 

Tests the null hypothesis that the data 
contained in the vector y is significantly 
different from a population mean µ. 

5 

lm(y~1)  

(two sample paired t-test) 

Test the null hypothesis that the difference 
between two populations, y, is different 
than zero. 

5 

lm(y~x)  

(two-sample independent) 

Two-sample t-test: Test the null hypothesis 
that the mean of two data sets are 
different. 

5 

residuals( fit ) 
Returns the residuals from the lm object in 
fit. 

7 

shapiro.test(residuals( fit )) 

Performs the Shapiro-Wilkes test for 
Normality on residuals from the lm object 
fit. The residuals() function extracts the 
residuals from fit. 

7 

summary( fit ) 
This function extracts additional data from 
the lm object in fit and displays it on the 
screen.   

5 

TukeyHSD(aov( fit )) 

Performs a Tukey’s HSD test on the lm 
object fit. The aov() function is used to 
pass specific parts of the lm object to the 
TukeyHSD function. 

7 
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Plotting functions 

Function Description Primer 

abline( h=a ) 
abline( v=a ) abline 

( MyFit ) 

Draws a horizontal (‘h’) or vertical (‘v’) line 
on a plot that crosses the axis at a.  
Alternatively, draws the fit linear regression 
contained in ‘MyFit’. 

4, 6 

barplot( x ) barplot( x , 
beside=TRUE) 

Creates a bar plot of the data in x. If x is a 
vector, then it is a simple bar plot. If x is a 
data frame, then each column of x is a 
separate group. The default is a stacked 
bar plot, but the option beside=TRUE can 
be used to create a grouped bar plot. 
See Plotting options for details. 

4 

boxplot( x , y ) 

Creates a box plot of the data in x. If 
provided, y is a categorical vector 
describing the grouping of x (i.e., x can be 
a stacked vector). See Plotting options to 
customize your plots. 

4 

hist( x ) 

Creates a histogram of the x vector. See 
Plotting options to customize your plots. 
See Plotting options to customize your 
plots. 

4 

legend(x,y,legend,col,pch) 

Adds a figure legend. x and y give the 
location of the legend box (upper left 
corner), legend is a vector of names, col is 
for the colours, and pch indicates the 
type of symbol. 

4 

plot( x , y ) 
Creates a scatter plot of the x and y 
vectors. See Plotting options to customize 
your plots. 

1, 4 

plot( fit , i ) 

Creates a diagnostic plot from the lm 
object in fit (ANOVA or regression). If i=1, 
the function returns a plot of the residuals.  
If i=2, the function returns a qqplot.  

7 
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Plotting Options 

Option Description Primer 

xlim, ylim = c(a,b) 
Specifies the axis limits to be plotted using a vector 
with two entries. The first entry ‘a’ is the minimum, 
the second entry ‘b’ is the maximum. 

4 

xlab, ylab = “ ” Labels the axes with what is written in the quotes 4 

main = “ ” 
Labels the plot title with what is written in the 
quotes 

4 

col = 

Specifies a color for the line/point/bar. Can be 
either a color name in quotes (e.g., ‘red’) or a 
number. Numbers one to five define colors as 
1black, 2-red, 3-green, 4-blue, 5-cyan, 6-pink, 
7yellow and 8-grey. See colors() for a full list of color 
names.  

4 

lty =  
Specifies the type of line as 1-solid, 2-dashed, 
3dotted, 4-dotdash, 5-longdash, 6-twodash. 

4 

lwd = Specifies the line width. Takes a positive number. 4 

pch =  

Specifies the point type. Some useful values are   

	 !   

4 

 
 


