As the global demand for food production rises, a deep understanding of our crops – and their microbiomes – becomes essential. A plant’s microbiome includes a diverse suite of microbial species that are crucial in maintaining plant health through improved plant nutrition and function, pest tolerance, and even responses to changing climate.
Rhizobia-legume symbioses are ecologically and agronomically important. Rhizobia are a group of soil bacteria that fix nitrogen for plants. In nature, the association of rhizobial strains and host plants are highly variable, even within the same species. Because of this, the genetic makeup required for efficient rhizobia-legume associations is still poorly understood.
In a recent study, Queen’s Biology Assistant Professor Dr. George diCenzo and PhD Candidate Rui Huang, with collaborators from the University of Florence (Florence, Italy), used RNA sequencing to determine the RNA transcripts of multiple rhizobial strains in the presence of root secreted compounds produced by three alfalfa varieties.
Results from this study demonstrated that transcriptional responses of rhizobia associated with alfalfa are influenced by the genotypes of both symbiotic partners and their interaction, suggesting high variability in the genetic determinants involved in phenotypic variation of plant-rhizobium symbiosis. The researchers’ work provides genetic insights into natural rhizobium variation that could potentially improve legume growth in agricultural systems. To learn more, read their article in mSystems, published by the American Society for Microbiology.
This research is co-authored by Camilla Fagorzi, Giovanni Bacci, Lisa Cangioli, Alice Checcucci, Margherita Fini, Elena Perrin, Chiara Natali, and Alessio Mengoni.